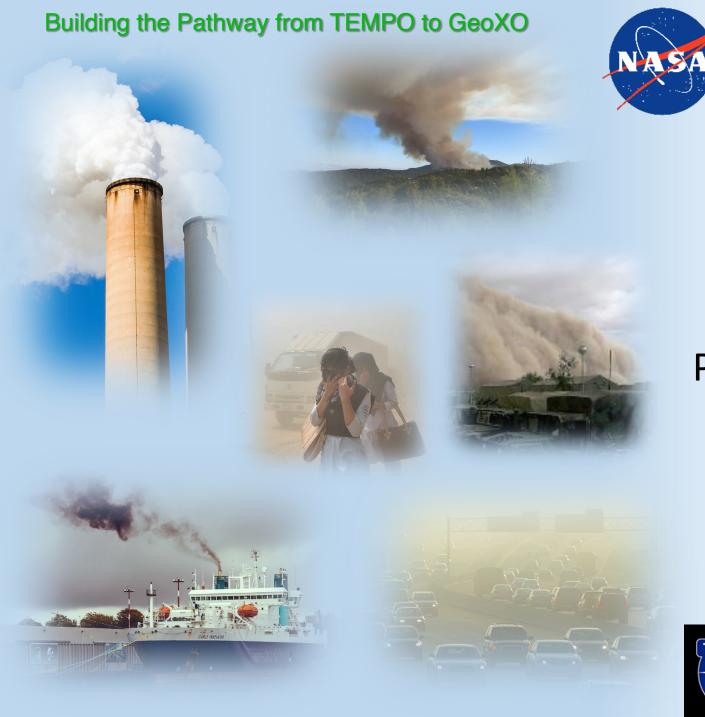


TEMPO Validation (Baseline/L2 Products)

Xiong Liu, Luke Valin, Jim Szykman*
Steve Brown, Laura Judd
Ron Cohen, Tom Hanisco, Pawan Gupta
Michel Grutter Chris McLinden*
*virtual

TEMPO Validation Components and Plans

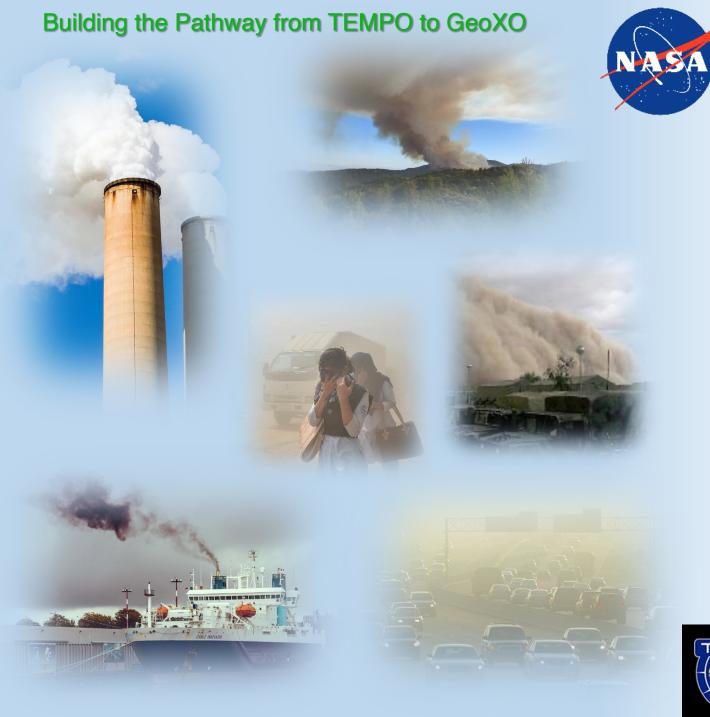

Xiong Liu, Luke Valin, Jim Szykman*

Steve Brown, Laura Judd

Ron Cohen, Tom Hanisco, Pawan Gupta Michel Grutter Chris McLinden*

*virtual

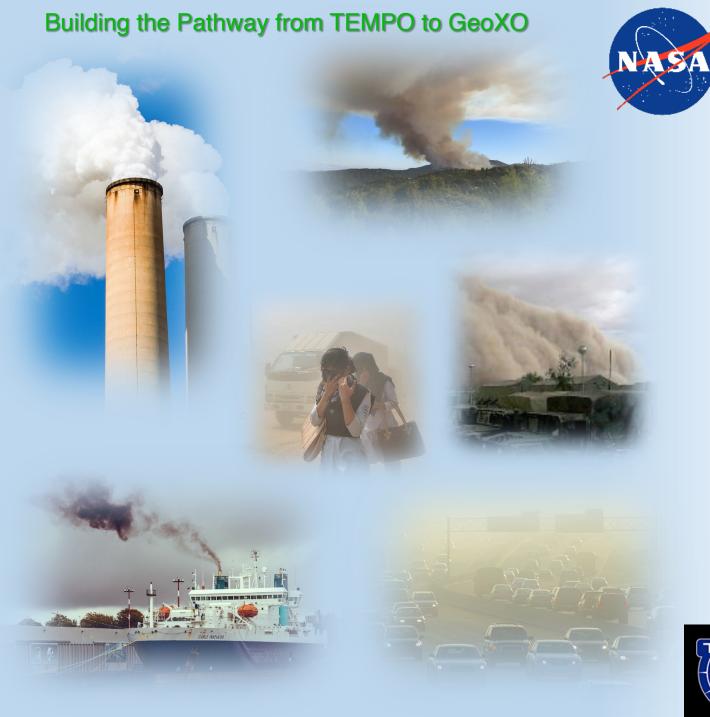
Large Scale Multi-Agency / Platform Sub-Orbital Activities


Xiong Liu, Luke Valin, Jim Szykman*

Steve Brown, Laura Judd

Ron Cohen, Tom Hanisco, Pawan Gupta Michel Grutter Chris McLinden*

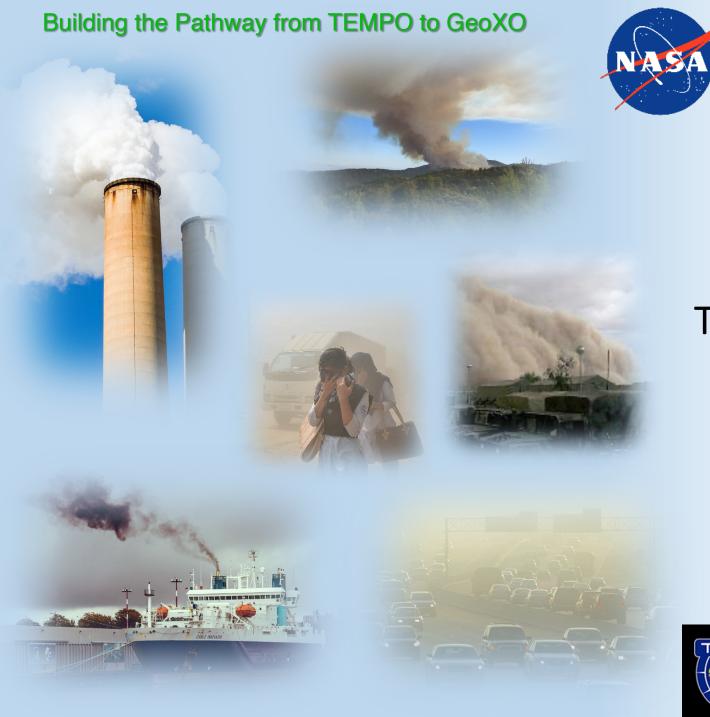
*virtual


Ground-based Networks

Xiong Liu, Luke Valin, Jim Szykman*
Steve Brown, Laura Judd

Ron Cohen, Tom Hanisco, Pawan Gupta

Michel Grutter Chris McLinden*
*virtual



International Partner Activites

Xiong Liu, Luke Valin, Jim Szykman*
Steve Brown, Laura Judd
Ron Cohen, Tom Hanisco, Pawan Gupta

Michel Grutter Chris McLinden*
*virtual

TEMPO Validation Components and Plans

Xiong Liu, Luke Valin, Jim Szykman*

Steve Brown, Laura Judd

Ron Cohen, Tom Hanisco, Pawan Gupta Michel Grutter Chris McLinden*

*virtual

TEMPO (Tropospheric Emissions: Monitoring Pollution) mission Validation Plan

SAO-DRD-11 VERSION: BASELINE RELEASE DATE: APRIL 25, 2023

TROPOSPHERIC EMISSIONS: MONITORING OF POLLUTION (TEMPO) PROJECT

Level 2 Science Data Product Validation Plan

[April 25, 2023]

Prepared by the TEMPO Validation Team and TEMPO Ad-hoc Working Group on TEMPO Validation

Approved for Public Release; Distribution is Unlimited

- Outlines a best-efforts validation approach for the ozone, nitrogen dioxide, and formaldehyde data products.
- Leverages a comprehensive set of existing measurements (ground-based and satellite) for routine validation enhanced by episodic field mission and modeling efforts.
- Describes a structure for the geophysical data product maturity progression and discusses specific metrics to be generated to provide a 'fit for purpose' applications framework.

What are the fundamental validation metrics/needs and plans?

TEMPO mission Level 2 data product (variable) requirements

Product Name	Product Horizontal Resolution N/S x E/W @ center of FOR	Product Precision	Frequency
Total Column O ₃	2.0 x 4.75 km ²	3%	1 hour
Tropospheric Column O ₃	8.0 x 4.75 km ² (4 N/S across-track pixels coadded)	10 ppbv	1 hour
0-2 km O ₃ selected scenes	8.0 x 4.75 km ² (4 N/S across-track pixels coadded)	10 ppbv	2 hours
Total Column NO ₂	2.0 x 4.75 km ²	1.0 × 10 ¹⁵ molecules cm ⁻²	1 hour
Tropospheric Column NO ₂	2.0 x 4.75 km ²	1.0 × 10 ¹⁵ molecules cm ⁻²	1 hour
Tropospheric column CH ₂ O	2.0 x 4.75 km ²	1.0 × 10 ¹⁶ molecules cm ⁻²	3 hours

Note that the spatial resolution for the precision requirement is with 4 native pixels coadded, not the actual product resolution listed below.

What are the fundamental validation metrics/needs and plans?

Validation maturity of TEMPO Level 2 products is described by three levels: Beta, Provisional, and Full validation.

Beta: the product is minimally validated but may still contain significant errors; based on product quick looks using the initial calibration parameters. Publication of research based on Beta maturity products is not recommended and highly discouraged.

Provisional: product performance has been demonstrated through a large, but still (seasonally or otherwise) limited number of independent measurements. The analysis is sufficient for limited qualitative determinations of product fitness-for-purpose, and the product is potentially ready for testing by operational users and may be suitable for scientific publication.

Full: product performance has been demonstrated over a large and wide range of representative conditions, with comprehensive documentation of product performance, including known anomalies and their remediation strategies. Products are ready for systematic use and covering the full range of scientific and application use and publication.

Product Specific Performance Indicators (PSPIs)

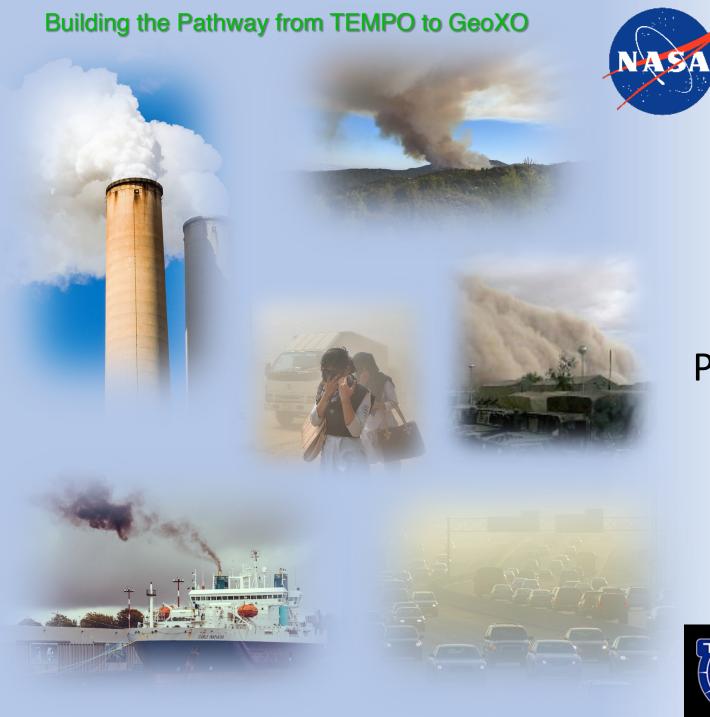
L2 Geophysical Data Beta Maturity Level -Product Specific Performance Indicators

Beta Maturity Level -Product Specific Performance Indicators			
NO ₂	CH ₂ O	O_3	
NO ₂ -01: Distinguish high NO ₂ urban areas from nearby rural areas for three select urban-rural scene combinations. NO ₂ -02: Assess bias and precision for at least one month of retrievals in comparison to independent correlative measurements to convey an initial characterization to the user community. The assessment should evaluate TEMPO's capability to observe diurnal variations. NO ₂ -03: Identify two radiatively homogenous, cloud-clear, low tropospheric NO ₂ background scenes over a dark surface (e.g., water) and over a bright surface (e.g., snow, desert) under different solar zenith angles and compute point-to-point variability (1-σ) as an empirical estimate for fitting uncertainty. Compare and communicate empirical estimates with those derived from the spectral fitting process.	CH ₂ O-01: Distinguish high CH ₂ O concentrations from background concentrations. Given CH ₂ O retrieval noise levels, these qualitative evaluations may use spatial or temporal averaging. CH ₂ O-02: Assess bias for at least one month of retrievals, including the diurnal cycle, of comparison to independent correlative measurements to convey an initial characterization to the user community. The assessment should evaluate TEMPO's capability to observe diurnal variations. CH ₂ O -03: Identify two radiatively homogenous, cloud-clear, low CH ₂ O scenes over a dark (e.g., water) and over a bright surface (e.g., snow, desert) under different solar zenith angles and compute point-to-point variability (1-σ) as an empirical estimate for fitting uncertainty. Compare and communicate empirical estimates with those derived from the spectral fitting process.	O ₃ -01: Distinguish high tropospheric O ₃ areas resulting from stratospheric intrusion or pollution transport or pollution from nearby normal or low O ₃ areas for three select highlow O3 scene combinations. O ₃ -02: Assess bias and precision for at least one month of retrievals in comparison to independent correlative measurements to convey an initial characterization to the user community. The assessment should evaluate TEMPO's capability to observe diurnal variations. O ₃ -03: Identify two homogenous, cloud-clear, normal tropospheric O ₃ background scenes over a dark (e.g., water) and over a bright surface (e.g., snow, desert) under different solar zenith angles and compute point-to-point variability (1-σ) as an empirical estimate for retrieval uncertainty. Compare and communicate empirical estimates with those derived from the spectral fitting process.	

Product Specific Performance Indicators (PSPIs)

L2 Geophysical Data Provisional Maturity Level -Product Specific Performance Indicators

NO ₂	CH ₂ O	O_3
NO ₂ -04: Assess performance metrics (bias/precision/uncertainty) of the tropospheric NO ₂ product across the CONUS for 1 month period in two seasons, preferably summer and winter, that includes a range of column densities. NO ₂ -05: Conduct deep-dive analyses for an episode with relatively poor product performance, identify the root cause and recommend algorithm improvements.	CH ₂ O-04: Assess performance metrics (bias/precision/uncertainty) of CH ₂ O product across the CONUS for 1 month period in two seasons, preferably winter and summer, including a range of column densities. This assessment must evaluate the capability of TEMPO to observe diurnal variations of CH ₂ O. CH ₂ O-05: Conduct deep-dive analyses for an episode with relatively poor product performance, identify the root cause of the discrepancy and recommend algorithm improvements.	O ₃ -04: Assess performance metrics (bias/precision/uncertainty) of O ₃ products across the CONUS for 1 month period in two seasons, preferably winter and summer, that includes a range of column densities. This assessment must evaluate the capability of TEMPO to observe diurnal variations of O3 products. O ₃ -05: Conduct deep-dive analyses for several episodes with relatively poor product performance, identify the root cause of the discrepancy and recommend algorithm improvements.



Product Specific Performance Indicators (PSPIs)

L2 Geophysical Data Full Maturity Level -Product Specific Performance Indicators

NO ₂	CH ₂ O	O ₃
NO ₂ -06: Assess bias, precision, and uncertainty of the tropospheric NO2 product across the CONUS for a wide range of representative conditions over a period of at least one year. NO ₂ -07: Assess bias, precision, and uncertainty of the tropospheric NO2 product over areas of interest using data gathered during targeted field campaigns.	CH ₂ O-06: Assess bias, precision, and uncertainty of the CH ₂ O product across the CONUS for a wide range of representative conditions over a period of at least one year. CH ₂ O-07: Assess bias, precision, and uncertainty of the CH ₂ O product over areas of interest using data gathered during targeted field campaigns.	O ₃ -06: Assess bias, precision, and uncertainty of the O ₃ product across the CONUS for a wide range of representative conditions over a period of at least one year. O ₃ -07: Assess bias, precision, and uncertainty of the tropospheric product over areas of interest using data gathered during targeted field campaigns.

Large Scale Multi-Agency / Platform Sub-Orbital Activities

Xiong Liu, Luke Valin, Jim Szykman*

Steve Brown, Laura Judd

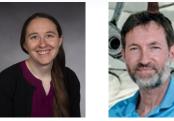
Ron Cohen, Tom Hanisco, Pawan Gupta Michel Grutter Chris McLinden*

*virtual

AEROMMA: Atmospheric Emissions and Reactivity Observed from Megacities to Marine Areas

NPS Twin Otte

O Tier 1


O Tier 2 Tier 3&4

NOAA Twin Otter

Principal Investigators

Urban Flights

Rebecca Carsten **Schwantes** Warneke

Marine Flights

Patrick Veres



Andrew Rollins

DC-8 Schedule

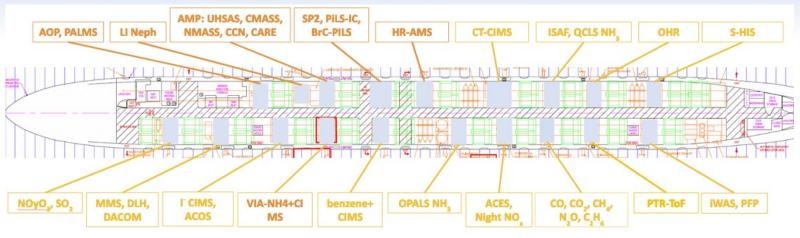
NASA G-V

NASA DC-8

Marine Flights, Palmdale CA, June 16-25 Remote marine atmosphere, sulfur cycle and feedbacks on climate

Urban Flights, Palmdale CA (Jun 26-30; Aug 19-27), Dayton OH (Jul 25-Aug17) New paradigms in emissions and the future of urban air quality Validation and new science with geostationary remote sensing

AEROMMA: Atmospheric Emissions and Reactivity Observed from Megacities to Marine Areas



Comprehensive suite for VOCs, NO_x, GHG, aerosols (composition, size, optics), radiation, remote sensing, etc.

Instruments from NOAA CSL, NASA, external collaborators (NOAA AC4)

NASA DC-8 Instrumentation

Urban Flight Plans – Los Angeles, Chicago, New York

Repeated flight patters over each major target city

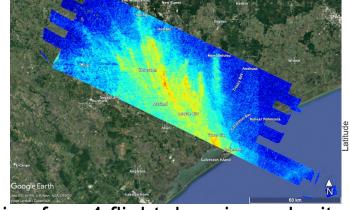
Boundary layer legs < 1 km AGL

3-7 spirals per flight leg to ~ 6 km

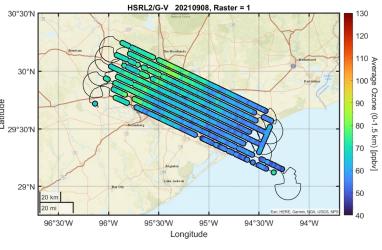
Transits at 10-11 km

Synergistic TEMPO Air Quality Science (STAQS)

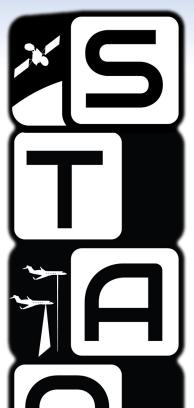
In Summer 2023, STAQS seeks to integrate TEMPO observations with traditional and enhanced air quality monitoring to improve the understanding of air quality science for increased societal benefit.


Laura Judd airborne lead

John Sullivan ground lead

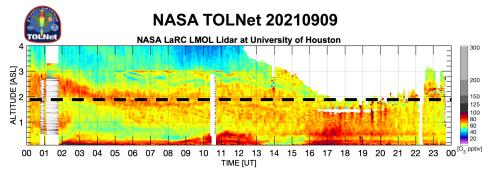


Aiming for ~4 flight days in each city (+1 Toronto flight)



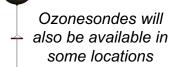
Platform	Instrument	Data Products	Sampling Strategy	
NASA JSC G-V —	GCAS	NO ₂ Column (250 x 560 m) HCHO Column (750 x 1680 m)	Systematic sampling of a ~ 50 x 140 km area 3x per day	
NASA JSC G-V —	HSRL2/DIAL	Ozone profiles, aerosol profiles, mixed layer height	(morning-midday-afternoon)	
NASA LaRC G-III	AVIRIS-NG	CH ₄ (> 10 kg/hr) and CO ₂ (large point sources) emissions	Systematic sampling of a ~ 50 x 140 km area 2x per day	
NASA LANC G-III	HALO	CH ₄ columns, aerosol profiles, mixed layer height	(morning-afternoon)	

Synergistic TEMPO Air Quality Science (STAQS)



In Summer 2023, STAQS seeks to integrate TEMPO observations with traditional and enhanced air quality monitoring to improve the understanding of air quality science for increased societal benefit.

Laura Judd airborne lead

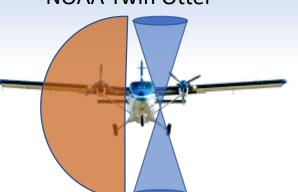


John Sullivan ground lead

66+ in TEMPO FOR
2 in Chicago
2 in LA
13 in NYC/Philly/CT

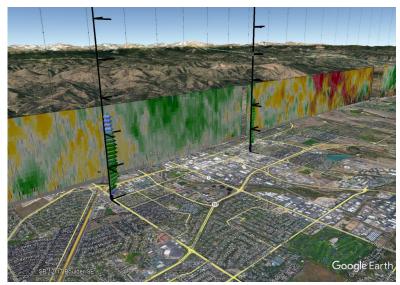
Platform	Instrument	Data Products	Sampling Strategy	
Cround boood	TOLNet	Lower tropospheric ozone profiles	Routine sampling with	
Ground-based —	Pandora	NO ₂ and HCHO columns and profiles	 enhanced measurements during flight days within the domain 	

CUPiDS: Coastal Urban Plume Dynamics Study



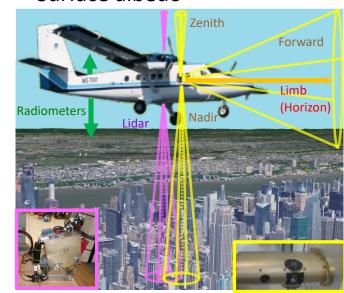
Principal Investigators

NOAA Twin Otter



July 5 – August 15, 2023, Long Island MacArthur Airport, 175 total flight hours

Emissions and chemistry within complex coastal transport environment

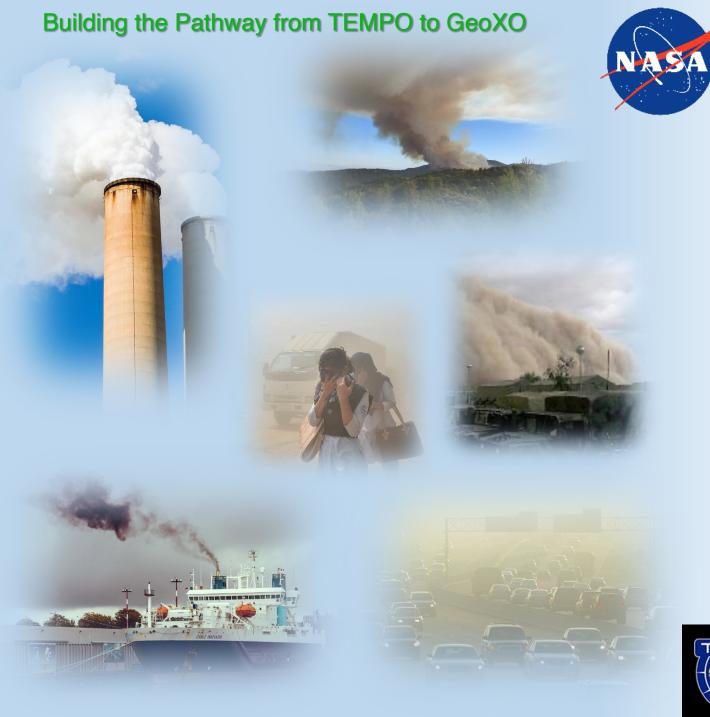

Scanning Doppler Lidar (CSL)

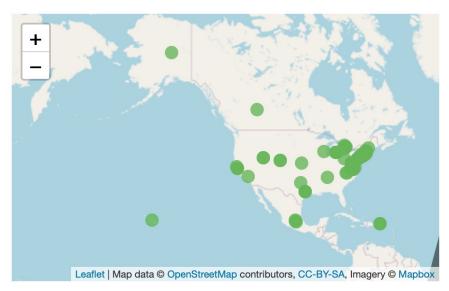
- Wind, Turbulence and Aerosol profiles
- **Boundary Layer Depth**

MAX-DOAS (CU – AC4 supported)

- NO₂, Formaldehyde, Glyoxal, IO profiles
- Surface albedo

In-Situ Airborne (CSL,GML)


- GHG, NO2, NO, NOY, ozone
- Temp, Press, RH


Ground based Networks

Xiong Liu, Luke Valin, Jim Szykman*
Steve Brown, Laura Judd

Ron Cohen, Tom Hanisco, Pawan Gupta

Michel Grutter Chris McLinden*
*virtual

66+ instruments in TEMPO FOV Adding 13+ in 2023 (IPMSI) Adding 10+ in 2024 (SNWG USDA)

NEW "Out of the Box" data

Total Column (DU)

² HCHO ₂ 22

Stations

GreenbeltMD - 2 LabGSFC - 17

Busan - 20

Bremen - 2

HoustonTX - 25 CambridgeMA - 26

LabGSFC - 27

Fajardo - 29

Juelich - 30

CharlesCityVA - 31 GreenbeltMD - 32

MountainViewCA - 34

Dakar - 3

HamptonVA - 37

BayonneNJ - 38

DearbornMI - 39

WallopsIslandVA - 40

HoustonTX - 49

OldFieldNY - 51

RichmondCA - 52

Potchefstroom-METSI 53

Seoul - 54

QueensNY - 55

MaunaLoaHI - 56

BoulderCO - 57

GreenbeltMD - 58 GreenbeltMD - 59

Faiardo - 60

AldineTX - 61

LabSciGlob - 63

NewHavenCT - 64

Altzomoni - 65

HuntsvilleAL - 66

Cologne - 67

LabSciGlob - 68

NewBrunswickNJ - 69

ChapelHillNC - 70

SaltLakeCityUT-

Hawthorne - 72

Islamabad-NUST -

EdwardsCA - 74

Dhaka - 76

ColumbiaMD - 101 LabGSFC - 103

Downsview - 104

Helsinki - 105

Innsbruck - 106

Toronto-West - 108

StGeorge - 109

LabLuftBlick - 110

Bucharest - 11

Broadmeadows - 112

LabGSFC - 114

Rome-ISAC - 115

Rome-SAP - 117 Cabauw - 118

Athens-NOA - 119

Innsbruck-FKS - 120

Downsview - 122

StonyPlain - 123

ComodoroRivadavia - 12 BuenosAiresSMN - 125

ColumbiaMD - 127

GreenbeltMD - 128

LabSciGlob - 129

Lindenberg - 130

Berlin - 132

BristolPA - 134

ManhattanNY-CCNY -

135

Rome-IIA - 138

WashingtonDC - 140

MexicoCity-UNAM - 142

LabSciGlob - 143

Eureka-PEARL - 144

Toronto-Scarborough - 145

Yokosuka - 146

SWDetroitMI - 147

Seoul-SNU - 12

Ulsan - 150

NyAlesund - 152

LynnMA - 153

SaltLakeCityUT - 154

HamptonVA-HU - 156 MexicoCity-Valleio - 157

Wakkerstroom - 15

Beijing - 160

Xianghe - 161

ColumbiaMD - 162

Tsukuba-NIES-West - 163

Seosan - 164

Durham - 165

PhiladelphiaPA - 166

KenoshaWI - 167

Egbert - 169

Downsview - 170

Beijing-RADI - 171

FairbanksAK - 174

Tsukuba-NIES - 176

WestportCT - 177

ManhattanKS - 178

CornwallCT - 179

BronxNY - 180

SanJoseCA - 181

Tel-Aviv - 182

LondonderryNH - 183

CapeElizabethME - 184

EastProvidenceRI - 185

MadisonCT - 186

PittsburghPA - 187

Bangkok - 190

Tsukuha - 10

Sapporo - 196

Kobe - 198

BoulderCO-NCAR - 204

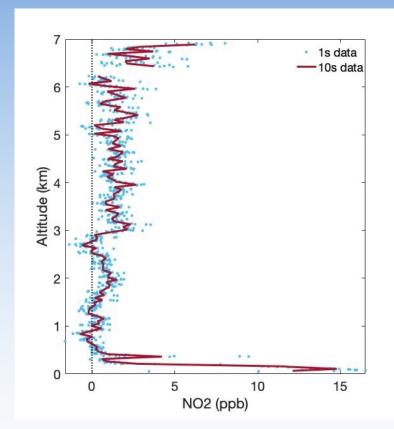
ArlingtonTX - 207

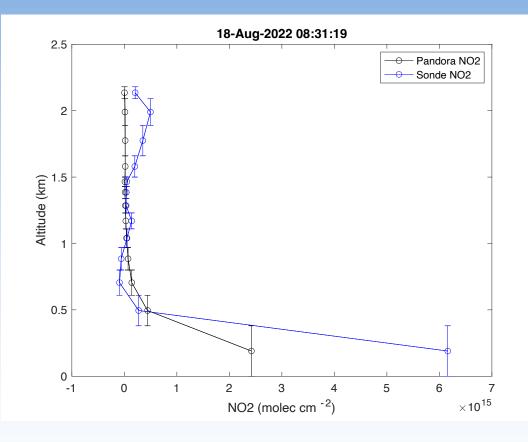
Windsor-West - 208

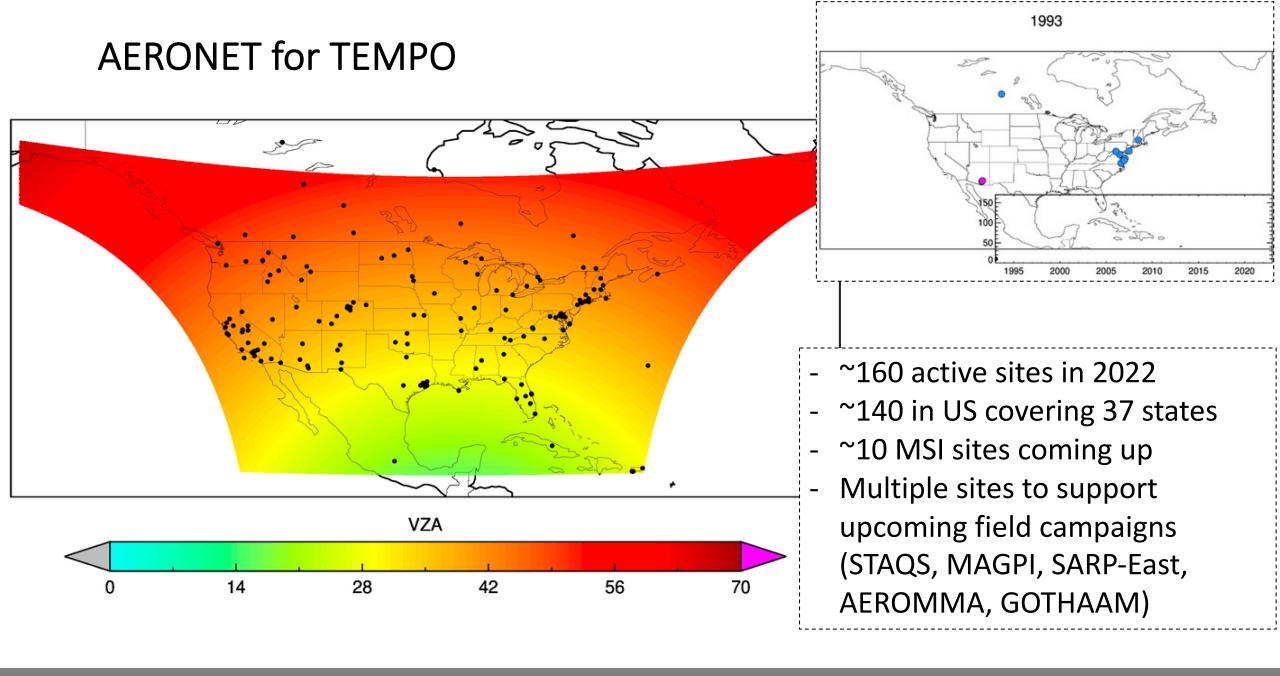
Izana - 209

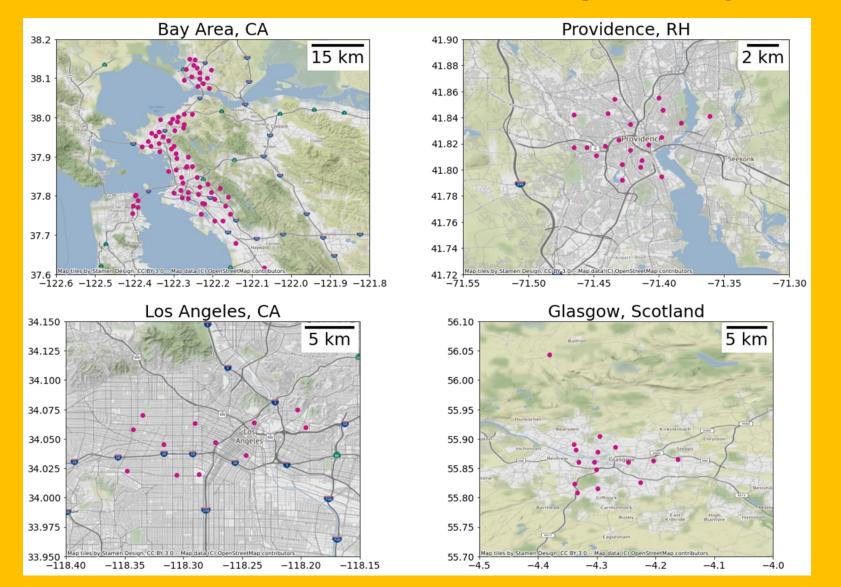
Dalanzadgad - 217

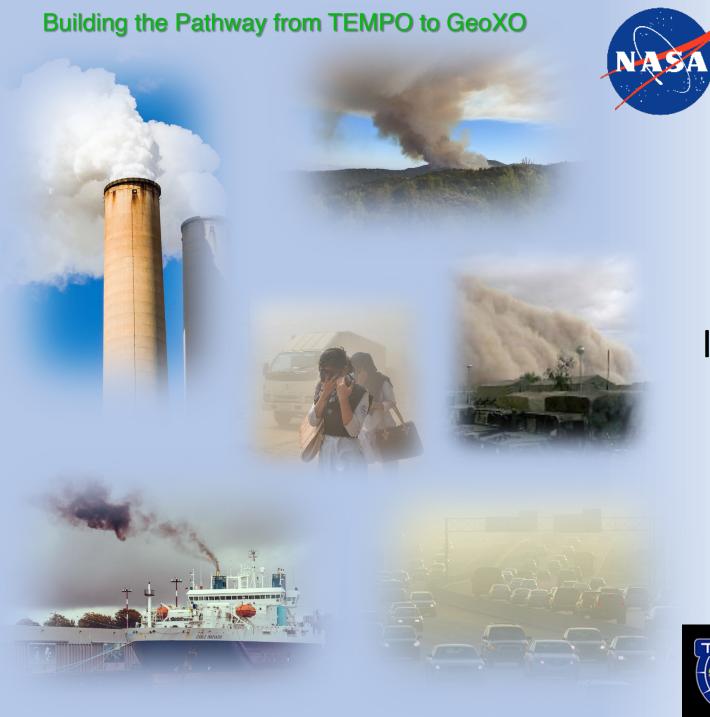
Trop Column (DU) Surface Concentration (ppb)






NO₂ Sonde Instrument


New optical NO2 sonde instrument (<5lbs) can help validate/understand Pandora NO₂ profiles. Howard University, Beltsville MD


One example of other activities BEACO₂N in 3 U.S. urban centers. Many other "low cost" sensor networks are being deployed.

NO₂, O₃, PM2.5

Also CO₂, NO, CO

International Partner Activites

Xiong Liu, Luke Valin, Jim Szykman*
Steve Brown, Laura Judd
Ron Cohen, Tom Hanisco, Pawan Gupta
Michel Grutter, Chris McLinden*

*virtual

Validation capacities in Mexico

VALLEJO

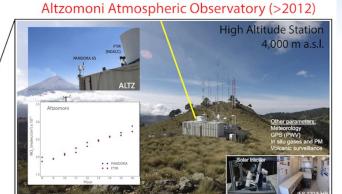
UNAM

CALAKMUL ALTZOMONI

future TCCON site >2023

NDACC site

EM27/Sun


Pandora

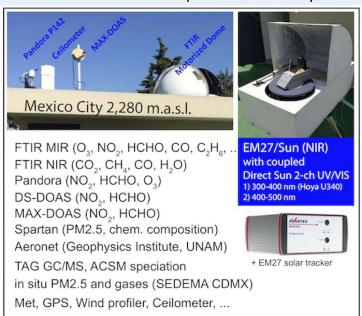
FTIR

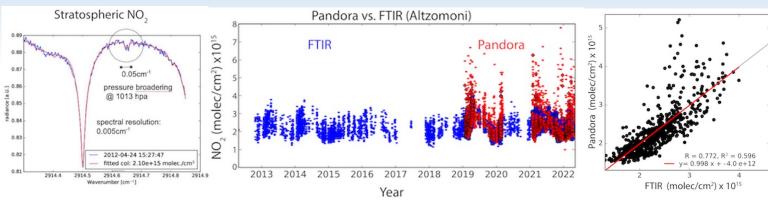
Solar absorption spectrometers

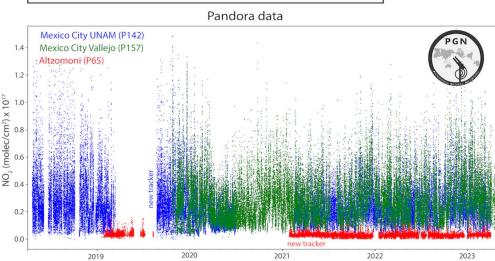
Mayan Biosphere

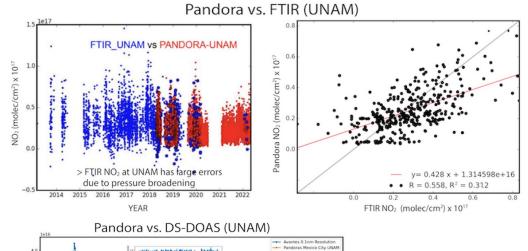
11 years of operation

Starting > 2023

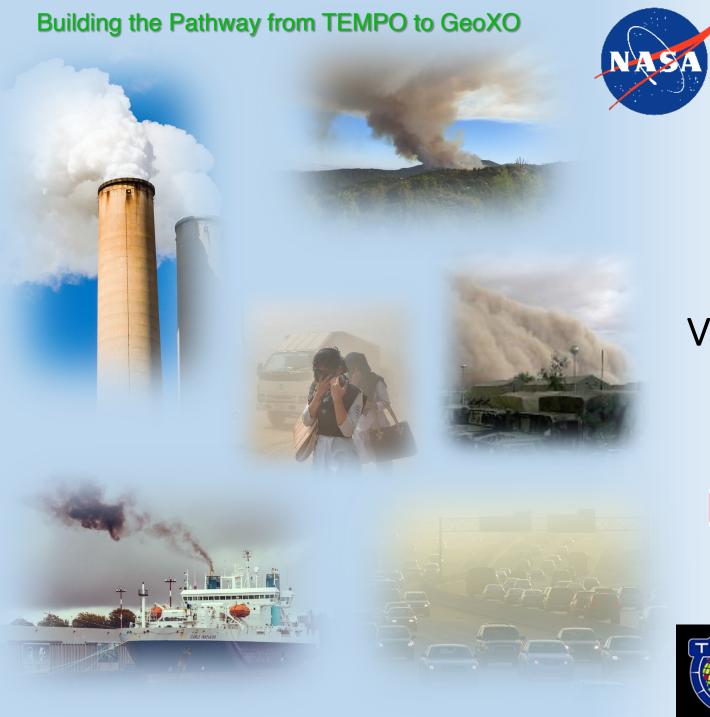





Validation capacities in Mexico

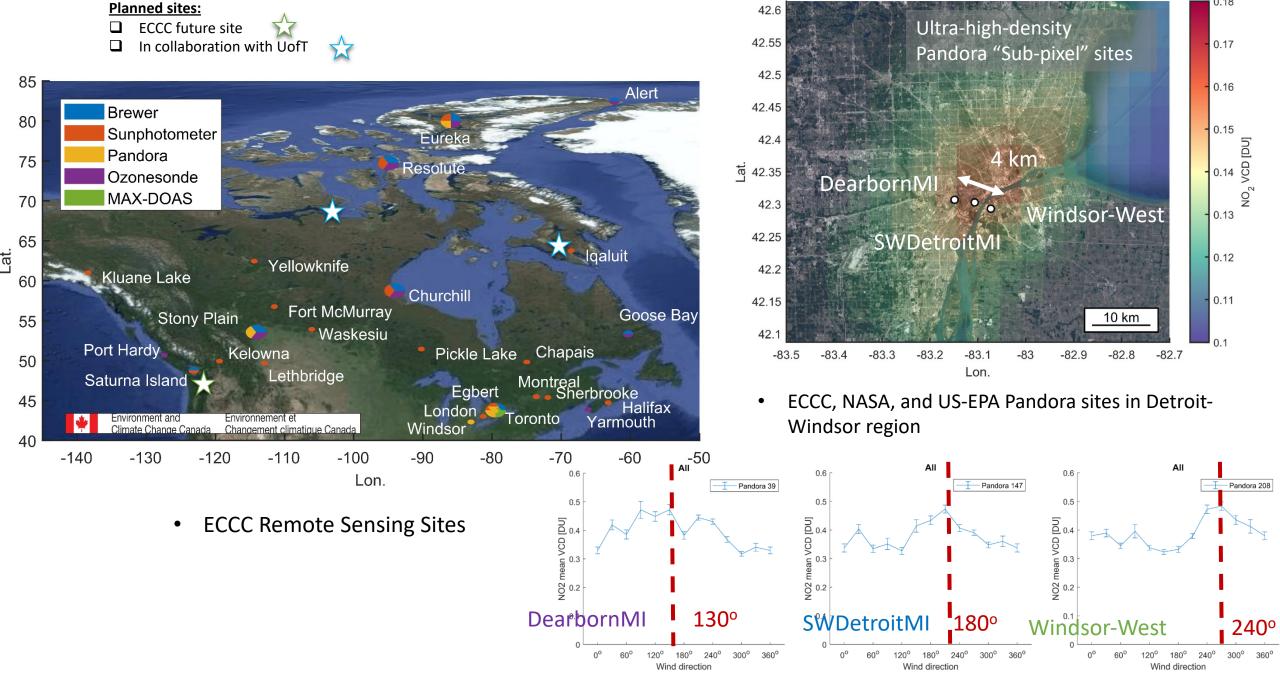


The UNAM Atmospheric Obsertvatory


Combining IR and UV/Vis Instruments

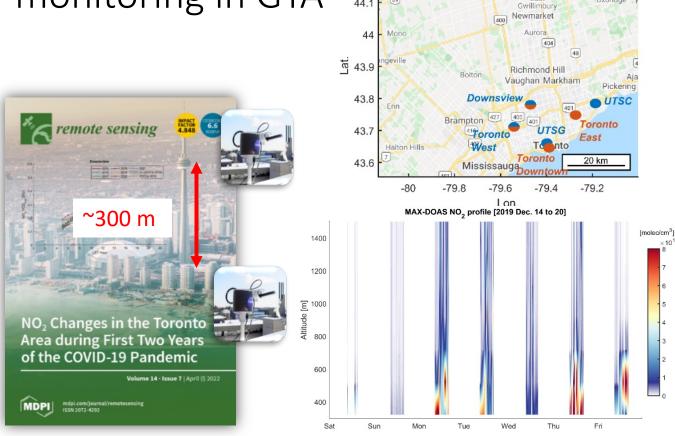
Key messages

- Importance of longtime measurements with ground-based remote sensors through international network efforts
- Validation (high spatial resolution), trend and variability of atmospheric composition
- Proper treatment of sensitivites among different RS techniques
- Joint air pollution and GHG investigations
- Other species: CO, NH₃, CH₄, HCN, C₂H₆ ...
- Importance to measure boundary layer evolution also from the ground (Doppler Lidar, Ceilometer)


Validation Activities at ECCC

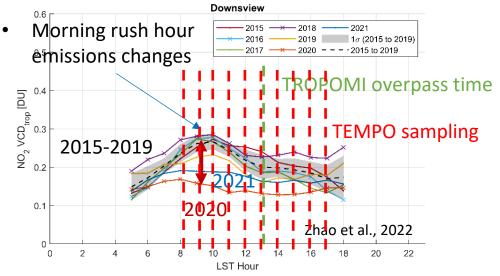
Chris McLinden and collaborators

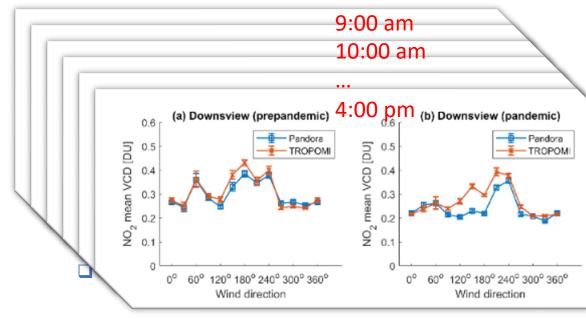
Environment and Climate Change Canada Environnement et Changement climatique Canada



All days

0.18


Air quality monitoring in GTA

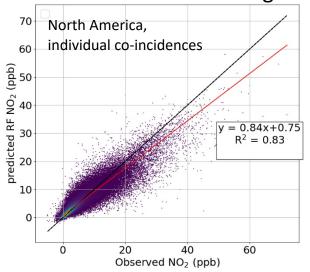

Egbert

Pandora

CN Tower: New vertical profiling experimental site

☐ Temporal changes; data binned by LST hours

- The NO₂ changes are inhomogeneous in space and time
- TEMPO observations are needed to reveal such diurnal changes



Other Validation Activities

- Calculate alternative AMFs for NO₂ and HCHO
 - Based on ECCC 2.5 km or 250 m model profiles; treatment of snow/albedo
 - U of Saskatchewan group has alternative 2D AMF to help with large viewing angles
- SWAPIT campaign (2024), others tbd
- Ongoing paired surface-HCHO + Pandora observations
- Evaluate TEMPO-based surface NO2 vmr product (developed using TROPOMI) from machine learning methods
- Evaluation of TEMPO's ability to capture spatial and diurnal gradients using in-situ and remote ground-based networks; mobile MAX-DOAS

Early prototype:
Surface NO2 using TROPOMI
VCD & Machine learning

Panel Questions

a) How will each of the correlative instruments assess the precision and accuracy of the TEMPO metrics?

Product Name	Product Horizontal Resolution N/S x E/W @ center of FOR	Product Precision	Frequency
Total Column O ₃	2.0 x 4.75 km ²	3%	1 hour
Tropospheric Column O ₃	8.0 x 4.75 km ² (4 N/S across-track pixels coadded)	10 ppbv	1 hour
0-2 km O ₃ selected scenes	8.0 x 4.75 km ² (4 N/S across-track pixels coadded)	10 ppbv	2 hours
Total Column NO ₂	2.0 x 4.75 km ²	1.0 × 10 ¹⁵ molecules cm ⁻²	1 hour
Tropospheric Column NO ₂	2.0 x 4.75 km ²	1.0 × 10 ¹⁵ molecules cm ⁻²	1 hour
Tropospheric column CH ₂ O	2.0 x 4.75 km ²	1.0 × 10 ¹⁶ molecules cm ⁻²	3 hours

- b) Utility of "At Home" Validation vs. Field Observations
- What is best for validation?— this summer acts as continued avenue for joint multi-agency field campaigns
- c) What are the plans/ideas for for activities in 2024 and 2025?
- How can we leverage Green Paper efforts as a sounding board for next validation campaign?