

Connecting Extreme Storms and Trace Gases with TEMPO

Kirsten R. Hall¹

Key Points

- Tropospheric O_3 anomalies are known to occur within dry intrusions associated with extreme storm events (e.g. extratropical cyclones and atmospheric rivers)
- STT of O_3 has been quantified in connection with ECs and ARs, and determined to contribute to a non-negligible amount of tropospheric O_3 -- up to 42% (32%) of NH STT O_3 flux for ECs (ARs).
- There is known transport of other trace gases and particles along ARs, e.g. Saharan dust over Europe

Introduction

- Extratropical Cyclones (ECs) and Atmospheric Rivers (ARs) are synoptic storm events in the lower troposphere.
- ARs are independent of ECs about 20% of the time.
- ARs intensities are variable, and strong AR events can have catastrophic consequences upon landfall, such as causing flooding and mudslides.
- → A broad community of researchers endeavors to understand all aspects of ARs and ECs from inception to weather upon landfall, and their connection to large-scale dynamics.

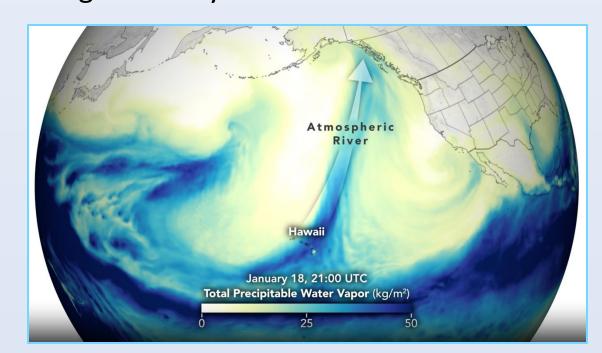


Image: Example AR not associate with EC
Credit: NASA Earth Observatory.
Screenshot from an animation generated by the Goddard
Earth Observing System Data Assimilation System (GEOS DAS).

What is the connection between Storms and Tropospheric O₃?

- Understanding the total stratospheric contribution to tropospheric O_3 is a significant area of research.
- Disentangling the contributions to tropospheric O_3 by STT from the production of O_3 due to precursor emissions is vital for understanding air pollution and future warming due to greenhouse gases.
- In addition to the planetary-scale continuous downward flow of air masses, in the extratropics, STE also occurs as an episodic phenomenon in association with synoptic-scale processes that perturb the tropopause.

Why do we need TEMPO?

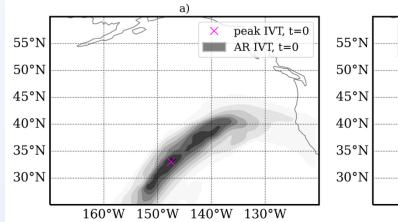
- There are known concerns in tropospheric O_3 reanalysis data products, and now with TEMPO we can have O_3 profiles at high spatial **and temporal** resolution directly from retrieval products
- Consistent tracking of O₃ and other trace gases

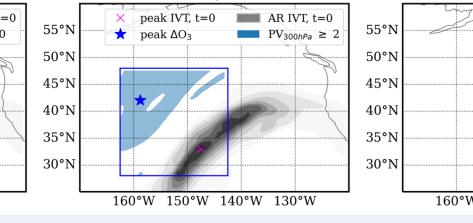
Based on work in collaboration with:

Huiqun Wang¹, Amir H. Souri^{2,3}, Xiong Liu¹, and Kelly Chance¹ Thank you to Junsung Park¹ for the TEMPO Ozone data products shown here!! **Affiliations:**

¹Center for Astrophysics | Harvard & Smithsonian

²NASA Goddard Spaceflight Center

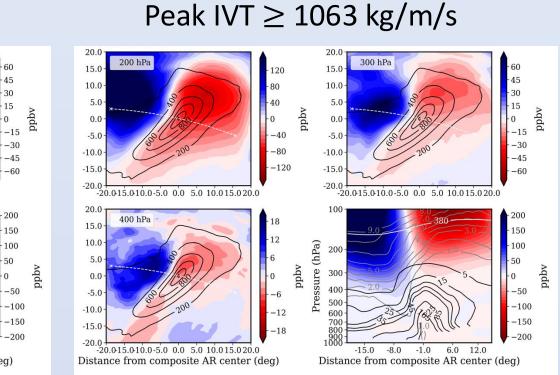

³Morgan State University


References: Hall+ 2024JGRD..12939949H ; Lyatt+ 2017JGRD..12213436J

Please email me! © kirsten.hall@cfa.harvard.edu

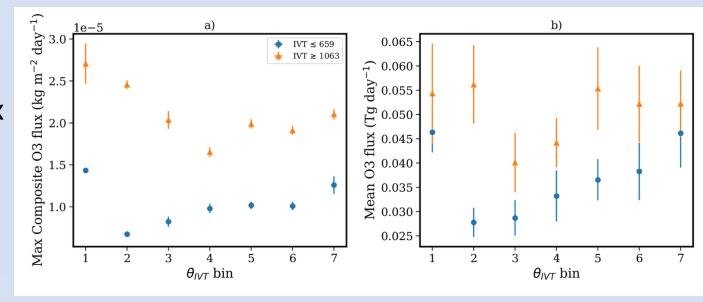
Method – To be adapted from Hall+2024

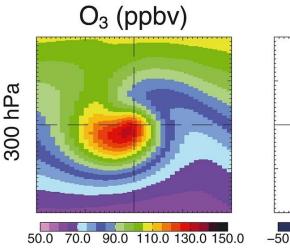
1. Track ARs using ARTMIP AR catalogs and the integrated vapor transport (IVT) computed from reanalysis data (in this case MERRA-2), as well as their associated O_3 anomalies – **this time use O_3 from TEMPO**

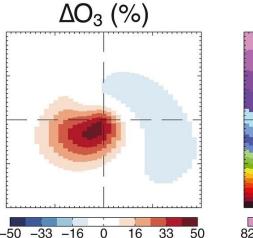

Left, step 1: identify the AR and its peak IVT (magenta x). Middle, step 2: Identify potential tropopause lowering (blue shading), find the peak value of anomalous O_3 (blue star), e.g. at 400 hPa. Right, step 3: within a 10 degree latitude by 10 degree longitude box (magenta) centered on the peak IVT at t=0 (magenta x), identify peak IVT for the AR at the next time step, t=1 (peach triangle). The algorithm repeats steps two and three until the AR dissipates or a new AR enters the smaller search box.

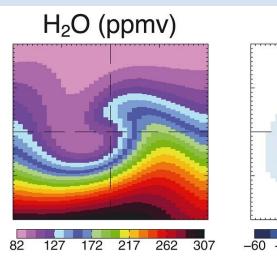
- 2. Track tropopause lowering/folding using reanalysis potential vorticity via a vertical cross section across storm system tracer (e.g. peak IVT for ARs) and maximum anomalous O_3 at, e.g., 400 hPa **Now directly from TEMPO** at high spatial **and temporal** resolution!
- 3. Assess the EC/AR IVT O_3 relationship for case studies and composites

Composite Results from Hall+2024 (ARs) and Lyatt+17 (ECs)

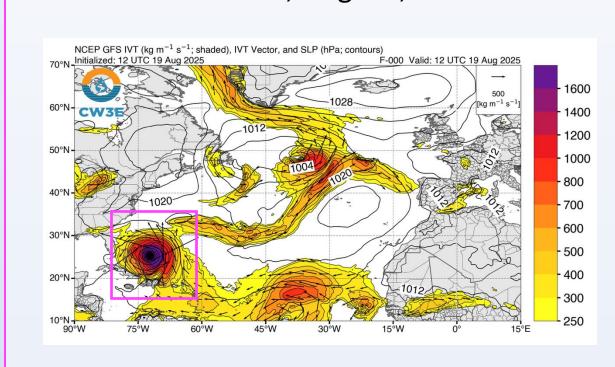

ARs placed in bins of direction of travel θ_{IVT} , and peak IVT; Compare lowest (left) and highest (right) \rightarrow For each, top left: 200 hPa, top right: 300 hPa, bottom left: 400 hPa, bottom right: vertical cross section over white dashed line in the other panels

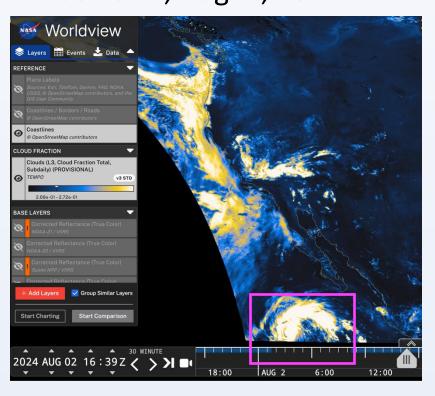

$\begin{array}{c} \text{Peak IVT} \leq 659 \text{ kg/m/s} \\ \\ \begin{array}{c} 20.0 \\ 15.0 \\ 10.0 \\ \hline \\ 0.0 \\ -5.0 \\ \hline \\ -10.0 \\ -15.0 \\ \hline \\ 20.0 \\ -15.0 \\ -20.0 \\ -20.015.010.0 - 5.0 \ 0.0 \ 5.0 \ 10.015.020.0 \\ \end{array}$



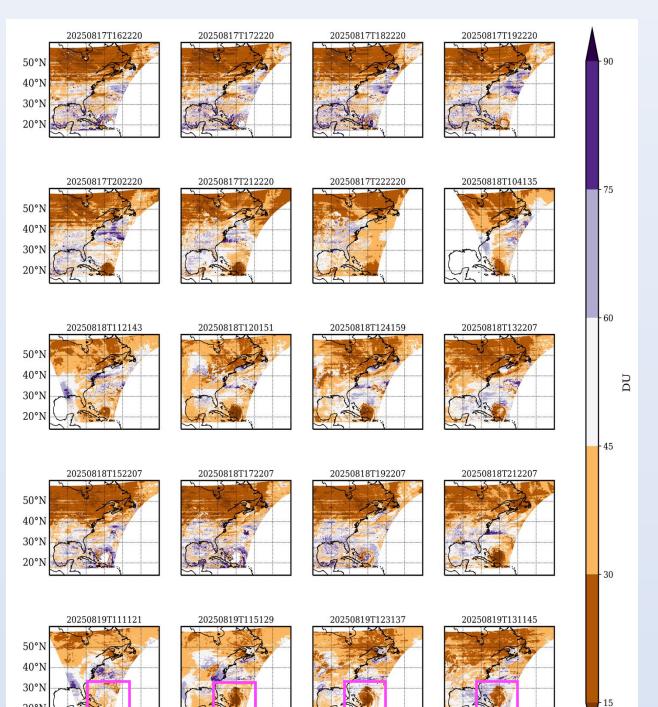

→ Right: Hall+24 AR
Composite maxima (left) &
mean area averaged O₃ flux
(right)

→ Below: Lyatt+17 EC Composite O₃ and H₂O concentrations and anomalies



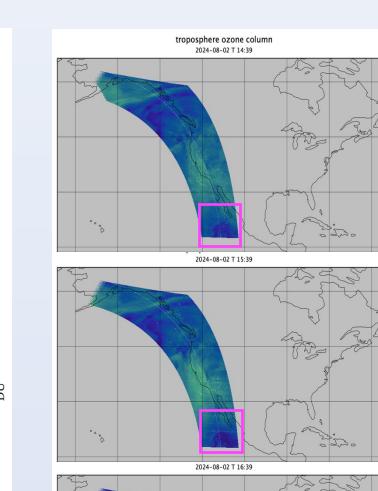

ΔH₂O (%)

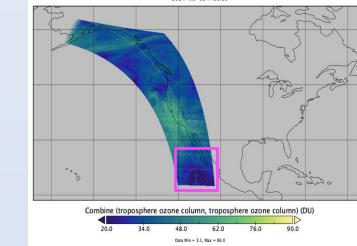
TEMPO TROPOPHERIC O₃ – PROVISIONAL, EXAMPLES ONLY

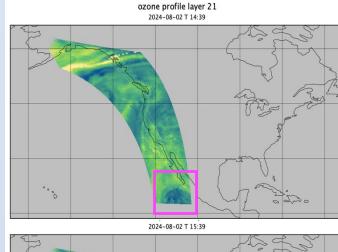

Hurricane Erin, Aug. 19, 2025

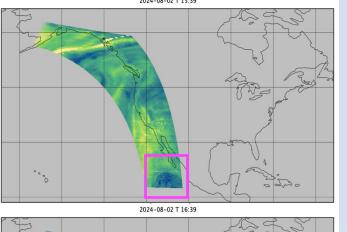
Pacific EC, Aug. 2, 2024

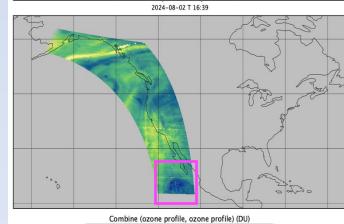
PROVISIONAL V03


- → Example hourly data for extreme storm events covered by existing TEMPO Ozone data products
- → Above: V03 troposphere ozone column
- → Right, Top: V04 troposphere ozone column
- → Right, Bottom: V04 single layer ozone


Main takeaway:


With the future of these data, we can carry out high temporal resolution studies of the transport of ozone and other trace gases associated with extreme storms


*This is demonstration and proof of concept for an algorithm (Methods) that already exists


PROVISIONAL V04

Combine (ozone prof