Hourly Nitrogen Oxides Emissions Estimated From TEMPO and Comparison With Facility-Level Monitoring Data Jobaer Ahmed Saju¹, Kang Sun^{1,2}, Caroline R. Nowlan³, Gonzalo Gonz'alez Abad³ and Xiong Liu³ ¹Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA ²Research and Education in Energy, Environment and Water Institute, University at Buffalo, Buffalo, NY, USA ³Atomic and Molecular Physics Division, Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA Acknowledgement: KS and JAS - NSF CAREER - NASA FINESST (2025-2028 Cohort) CRN, GGA, and XL - NASA TEMPO Mission ### Introduction - Nitrogen oxides (NOx) play a critical role in air quality and human health. - TEMPO provides hourly NO₂ measurements over North America from geostationary orbit. - Emissions can be estimated from satelliteobserved column amounts (Ω) , while the existing methods rely on steady-state assumption. - This study demonstrates hourly NOx emission TEMPO produced Tropospheric vertical column amounts (TCVDs). ### Methods - The directional derivative approach (DDA) is applied to L2 hourly NO₂ TVCDs from TEMPO, incorporating the column tendency term to relax the steady-state assumption. $$E = \frac{\partial \Omega}{\partial t} + \underbrace{\vec{u} \cdot (\nabla \Omega)}_{DD} + X\Omega \vec{u_0} \cdot (\nabla z_0) + k\Omega$$ $$\underbrace{DD_topo}_{DD_chem}$$ (1) Emissions (E) are derived from the tendency $(\partial\Omega/\partial t)$, advection $(u\cdot\nabla\Omega)$, topographic effects $(X\Omega u_0 \cdot \nabla z_0)$, and chemical loss $(k\Omega)$. - The L3 \rightarrow 4 (top row) method re-grids L2 NO₂ TVCDs to a finer L3 grid, then coarsens and estimate emissions, but loses spatial detail due to pixel coarsening. - We use L2→4 (bottom row) method that computes emission directly on native L2 pixel coordinates, preserving TEMPO's resolution for detailed emission mapping. ### Results - The tendency term contributes 40% to the DD'based emission rate over the New Madrid Power Plant on 1 November 2023 (Scan 8 at 12:00 local time), and the southeast negative anomaly (e) is compensated when tendency is added to DD (f). - The DD' estimator from the L2→4 method near 14 power plants, calculated on 0.01° grids, resembles a 2D Gaussian kernel elongated eastwest, matching theoretical point spread function of DDA emission estimator. - In 10 of the 14 individual cases and in the combined analysis, DD' shows a higher correlation with CEMS emissions than DD. - The fourfold low bias (d) is likely caused by underestimated NOx/NO₂ ratio near the stack. - GEOS-CF total NO emissions reveal strong hotspots at CEMS-monitored power plants. ## NOx/NO₂ Climatology from GEOS-CF NO₂-based emissions, reducing low bias near - This DD of f is essential for applying the high-NO/NO₂ sources. GEOS-CF NO and NO₂ data were used to - The DD of f=NOx/NO₂ from GEOS-CF shows derive f=NOx/NO₂ climatology for scaling TEMPO spatial patterns that align with major NOx sources. climatological f in emission estimation method. ### Outreach Events at Buffalo Museum of Science - TROPOMI-based NO₂ TVCDs world map with TEMPO field of regard displayed on the Museum's Omniglobe. - Our Pandora instrument was showcased Museum rooftop during Juneteenth 2025 for public outreach. # Conclusions - Incorporating the tendency term of NO₂ TVCDs into DDA improves correlation with CEMS emissions. - The L2->4 approach enables detailed emission mapping while preserving TEMPO's native resolution. - Including NOx/NO₂ climatology from GEOS-CF data in DDA can further improve emission estimates.