

Introduction of Newly Developed Level-2 Products from GEMS

<u>Hyeji Cha¹, Jhoon Kim¹, Heesung Chong², Gonzalo González Abad², Dha Hyun Ahn¹, Sang Seo Park³, and Won-jin Lee⁴</u> ¹Yonsei University, South Korea, ²Center for Astrophysics | Harvard & Smithsonian, United States, ³Ulsan National Institute of Science and Technology, South Korea, ⁴National Institute of Environmental Research, South Korea E-mail: chahyeji@yonsei.ac.kr

1. Abstract

In this study, retrieval algorithms for bromine monoxide (BrO) and water vapor (Total Column Water Vapor, TCWV) have been newly developed using GEMS measurements. These algorithms follow a typical two-step approach, which comprises spectral fitting (known as direct fitting developed by SAO) and the conversion of SCD into VCD (by calculated AMF). The retrieval window for water vapor is 435.0 – 467.0 nm, while for bromine monoxide it is 326.0 – 356.0 nm. Validation and intercomparison of water vapor are performed using ground-based AERONET Precipitable Water and the TROPOMI preoperational TCWV product, both showing good agreement (r > 0.9). The spatial distributions of BrO over volcanic eruptions are also compared with other satellite datasets.

2. Retrieval Algorithm of Total Column BrO

3. Retrieval Algorithm of Total Column Water Vapor **3.1. Methodology**

Flow chart

Retrieval configuration

Parameter	Note
Fitting window	435.0 – 467.0 nm
Source spectrum	Daily Solar Irradiance measured from GEMS
Solar reference spectrum	Chance and Kurucz (2010)
Undersampling correction spectrum	Chance et al. (2005)
Rotational Raman scattering spectrum	Chance and Spurr (1997)
Vibrational Raman scattering spectrum	Chance and Spurr (1997)
H ₂ O cross section	Gordan et al. (2022), 293K
NO ₂ cross section	Vandaele et al. (1998), 220K
O ₂ -O ₂ cross section	Finkenzeller and Volkamer (2022), 293K
Liquid H ₂ O cross section	Manson et al. (2016), 296K
O ₃ cross section	Serdyuchenko et al. (2014), 233K
Scaling polynomial	Second order
Baseline polynomial	-
Super-Gaussian slit function	Beirle et al. (2017)
Wavelength shift	

2.1. Methodology absorption cross Spectral fitting: SAO approach (Chance, 1998) section of a species i $\{I_0(\lambda) + x_u b_u(\lambda) + x_r b_r(\lambda)\} \exp\left(-\right)$ $SCD_i\sigma_i(\lambda) || P_{sc}(\lambda) + P_{bl}(\lambda)$ $F(\lambda) =$ rotational undersampling source Raman scatt. slant column amount of a species *i* correction spectrum

Slant column retrievals of BrO and TCWV are based on a non-linear least squares method by directly fitting the modeled radiance spectrum to the measured spectrum.

Flow chart

Parameter	Note
Fitting window	326.0–356.0 nm
Radiance reference spectrum	Spectrum averaged over the whole
	domain for each CCD pixel
Solar reference spectrum	Chance and Kurucz (2010)
Undersampling correction spectrum	Chance et al. (2005)
Rotational Raman scattering spectrum	Chance and Spurr (1997)
Vibrational Raman scattering spectrum	Chance and Spurr (1997)
BrO cross section	Wilmouth et al. (1999), 228K
O ₃ cross section	Serdyuchenko et al. (2014), 243 & 273 K
The first-order Taylor series expansion	Puķīte et al. (2010)
for O ₃ absorption (243 and 273 K)	
O ₂ –O ₂ cross section	Finkenzeller and Volkamer (2022), 293K
NO ₂ cross section	Vandaele et al. (1998), 220 K
SO ₂ cross section	Birk and Wagner (2018), 293 K
HCHO cross section	Chance and Orphal (2011), 300 K
Scaling polynomial	Fourth order
Super-Gaussian slit function	Beirle et al. (2017)
Wavelength shift	

2021/08/14

[x10¹³ molecules cm⁻²]

2021/08/14

0.5 1.0 1.5 2.0 2.5 TROPMOI SO₂ VCD [DU]

Retrieval configuration

3.2. Results

Atmospheric River events (9 July 2024)

TROPOMI 2024/07/09

TROPOMI TCWV [kg m^{-/}

- Both GEMS and TROPOMI detected atmospheric river evens passing through South Korea on 9 July 2024, resulting in extreme rain. GEMS and TROPOMI showed similar spatial distribution, but GEMS TCWV
- values showed lower value than TROPOMI.
 - mainly due to the combined effects of input data difference for AMF calculation (surface albedo, cloud fraction, and cloud top pressure)

BrO plumes during volclanic eruption (14 Aug 2021)

- BrO plumes were co-detected with SO₂ from both GEMS and TROPOMI over Japanese volcanoes (Nishinoshima, Fukutoku-OkaNoba), although BrO was not detected over Taal volcano.
- GEMS BrO VCD has systematically lower than those from TROPOMI, due to the background correction (reference sector correction) scheme.

2.3. Intercomparison

- Intercomparison results against TROPOMI (s5p-pal) BrO product
- Evaluation period: 1 Jan 2023 31 Dec 2023 (1-year)

3.3. Validation/Intercomparison

Intercomparison between GEMS and TROPOMI

4. Conclusion

Total Column BrO and TCWV are successfully retrieved by using GEMS measurements

- GEMS TCWV show excellent correlation with AERONET Preicipitable datasets (R = 0.959, MBE = -1.806 kg m⁻²) for 2-year period (Mar 2021 – Feb 2023).
- no temporal dependency for correlation coefficient (R), but MBE has diurnal variation.
- GEMS TCWV has lower R value over low latitudes.
- Intercomparison between GEMS and TROPOMI TCWV show good agreement, but underestimation issue is amplified over the ocean.
- due to the difference in surface albedo, cloud properties input data

with applying different fitting window (326.0 – 356.0 nm for BrO, 435.0 – 467.0 nm for TCWV) GEMS BrO and TCWV both show reasonable correlations, but they both show underestimation compared to those of TROPOMI due to the different reasons (different background correction scheme, difference in input data for AMF calculation). Reference

Kim et al., 2020. "New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)". Bulletin of the American Meteorological Society, 101

This research was supported by a grant from the Nation Institute of Environmental Research (NIER), funded by the Korea Ministry of Environment (MOE) of the Republic of Korea (NIER-2024-01-02-041).