
The Geostationary Environment Monitoring Spectrometer (GEMS) captures images of

the Asia region more than eight times a day, providing 21 key outputs related to air

quality, which are crucial for analyzing and monitoring air quality in Asia. Accurate ground

reflectance values are essential for deriving precise air quality outputs from satellite

observations. However, errors induced by clouds and snow during the ground reflectance

estimation process necessitate accurate identification of regions affected by these

elements. Currently, GEMS detects clouds using absorption spectral data of O2-O2 and

O3, which involves algorithms that calculate cloud cover based on differential absorption

features. GEMS, unlike other environmental satellites that primarily utilize the visible light

spectrum, predominantly uses the ultraviolet range, which has shorter wavelengths than

visible light. This results in stronger interactions, such as scattering and absorption, with

atmospheric particles. Consequently, compared to other environmental satellites that

utilize the visible spectrum, GEMS exhibits relatively lower accuracy in deriving cloud

coverage due to these interactions. For snow detection, GEMS relies on data from the

Near-real-time Ice and Snow Extent (NISE) provided by the National Snow and Ice Data

Center (NSIDC), rather than using a direct algorithm.

To address these issues, this study aims to improve the accuracy of cloud and

snow detection by applying deep learning techniques, which have demonstrated

superior performance in the field of image processing.
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In this study, deep learning techniques were applied to improve the snow/cloud 

output products of GEMS. The model's prediction results showed effective 

detection of cloud areas; however, the performance for clouds was relatively low. 

This was due to the use of imagery from early November, which contains a lower 

proportion of snow pixels, leading to a data imbalancing issue. Moving forward, 

constructing label data for images from the snowier months of December to 

January and training the model with this data could enhance the performance of 

the snow products.

Hyperparameter Value

Optimizer Adam

Learning Rate 1e-4 ~ 1e-5

Loss Function
Multi-Class Sparse 

IoU Loss

Batch Size 30

Epoch 300
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Introduction

Conclusions

The research is divided into several parts: preprocessing of input data, creation 

of label data, and design and training of the deep learning model. 

Methods Result

The input data utilized the preprocessed data from GEMS's L1C. Since GEMS

observes different areas depending on the time of acquisition, all data were

gridded to the same area to align the observation areas uniformly. The intention

was to utilize all 1,033 bands of GEMS for training the model. However,

considering the complexity of the model and processing time, of the 1,033 bands,

the last 1,024 bands were averaged in groups of eight to reduce them to 128

bands. Afterward, min-max normalization was applied to each of the 128 bands.

For the creation of label data, the following reference data were selected:

SNOW Cloud

GEMS Snow flag (previous day's NISE product) GEMS L2 Cloud data(ECF>=0.4)

Geo-KOMPSAT 2A(GK2A) AMI Snow data AMI Cloud Data()

GK2A AMI Snow data quality flag(DQF)

False Color Image 

(average of GEMS Blue 450~500nm (Blue), AMI's NIR at 

1.3 𝝁𝒎, AMI's SWIR).

MODIS Snow Cover Daily

False Color Image 

(average of GEMS Blue 450~500nm (Blue), AMI's NIR at 

1.6 𝝁𝒎, AMI's SWIR).

Fig 1. Detailed workflow of this study.

Data Name
GEMS_CLD_yyyymmdd_hhmm.tif

(yyyymmdd: Acquisition Date, hhmm: Time)

Area
Latitude: 5°S~ 45°N 

Longitude: 75°E ~ 145°E

Data Type Float 32

Data Size (1000, 1400, 128)

Fig 2. Example of Input Data.

Table 1. Properties of the Input Data.

Table 2. Reference Data for Annotation(Labeling).

Prior to the labeling process, an annotation guideline was created based on the selected

reference data. This guideline included predefined methods and criteria for labeling, as

well as quality control procedures. Following these guidelines, precise annotation work

was conducted using QGIS.

Fig 3. Example of Cloud and Snow Label.

The model training was conducted using preprocessed input data and the created label data. A

total of 24 images were used for snow detection, and 16 images were used for cloud detection.

Each piece of data was cut into 64 x 64 size patches for input into the deep learning model.

Subsequently, training was conducted using the 3D Attention U-Net, designed for snow/cloud

detection. Unlike the traditional U-Net, the 3D Attention U-Net utilizes 3D convolution

operations instead of 2D convolutions, preventing the loss of channel information during the

convolution process. Additionally, it employs an attention module that focuses on important

features in both the spatial and channel dimensions, thereby enhancing the model's

performance.

Data Type Number of Patch

Snow
Training 6,275

Test 1,537

Cloud
Training 4,395

Test 1,103

Table 3. Number of Patch Data.

Table 4. Hyperparameter

Fig 4. Model Structure of 3D Attention U-Net.

Snow

Indicator Value

Precision 0.682

Recall 0.784

Accuracy 0.986

F1-Score 0.72

IoU 0.574

Cloud

Indicator Value

Precision 0.913

Recall 0.928

Accuracy 0.925

F1-Score 0.920

IoU 0.853

Table 5. Performance Evaluation(Snow) Table 6. Performance Evaluation(Cloud)

When evaluating the performance of the trained model using the test data, the results

appeared as shown in the table below. Cloud detection showed high values, while snow

detection displayed lower values. The relatively low performance in snow detection can

be attributed to the fact that the data is from early November 2021. In the case of clouds,

the ratio of cloud to background pixels is nearly identical, but the snow-covered area

pixels in the test data account for only 2.5% of the total pixels. This comparison can also

be observed through Fig.3.

Fig 4. PR Curve(Snow) Fig 5. PR Curve(Cloud)

Fig 5. Predicted Result (Snow) Fig 6. Predicted Result (Cloud)
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