

Downscaling UFS AQM Surface NO₂ to High-Resolution using Ground & Satellite (TEMPO) Observation through Machine Learning Data Fusion Beiming Tang^{1,2}, Barry Baker¹, Daniel Tong^{1,2}, Patrick Campbell^{1,2}, Youhua Tang^{1,2}, Wei Li^{1,2}, Madankui Tao³, Siqi Ma²

1. Background & Objectives

- Each year, more than 6.7 million deaths are attributed to indoor and outdoor air pollution according to most recent Global Burden of Disease study. There is a need for improved estimates of exposure to support air quality management, research and compliance, and analysis of air pollution impacts. However, ground observations are unevenly distributed and focus on urban regions, leaving majority of rural region and developing countries un-represented.
- We proposed an approach to fill gaps in observation networks by machine learning data fusion: including NOAA UFS AQM model predictions, tropospheric NO₂ column from **TEMPO**, and high-resolution NEMO anthropogenic emissions. We aim to build a daily, 1-km distribution dataset for NO₂ with potential to include other species in CONUS domain.

2.Representative Inputs

Inputs	Source	Year of Product
CTM	UFS-AQM	2023
NO ₂ column	TEMPO	2023
NO ₂ column (merge)	TROPOMI	2023
AOD	MODIS MAIAC	2023
NDVI	MODIS	2023
Land use cover	MODIS	2022
Meteorology	ERA5	2023
Anthropogenic Emissions	NEMO	2019
Elevation	SRTM	2022
Population	Land Scan	2022

• Chemical Transport Model output from NOAA UFS-AQM.

• Tropospheric NO₂ column is from TEMPO, gap-filling with TROPOMI NO_2 .

3.Model Development

- We choose Aug-2023 to build the machine learning model. Aug, 2023 was chosen to represent AEROMMA (https://csl.noaa.gov/projects/aeromma/) field campaign.
- We have total of 3309 data for 112 sites within CONUS.
- All inputs were re-grid to daily, 1km before 2D-interpolated to ground station locations. The interpolated data were used for training the model. A random forest algorithm is applied for building ML model
- The developed ML model were applied back to inputs daily, 1km matrix to generate spatial 1km daily estimates.

¹NOAA Air Resources Laboratory, Atmospheric Sciences Modeling Division; ²George Mason University, Center for Spatial Information Science & Systems; ³MIT, Department of Earth, Atmospheric, and Planetary Sciences

4. Result Spatial Distribution

CONUS

- Machine learning (ML) prediction 1km Downscaled from Original UFS-AQM 13km was plotted against EPA AQS observation in CONUS domain
- Our high-resolution model enables to demonstrate sub-city scale surface NO₂ distribution as examples shown in LA, Denver, Alberquque, and DC.
- Background "square" color indicate ML model prediction, while "dots" indicate ground observation from EPA AQS
- Daily product averaged to monthly mean being plotted

5. Evaluation and Temporal Skills

PM _{2.5}	R	RMSE (ppbv)	STD model (ppbv)	STD obs (ppbv)
ML model	0.92	1.88	4.13	4.70
Original UFS-AQM	0.62	3.94	3.61	4.70

AQM (blue to red)

• Time Series in representative cities (Denver) show ML model temporal skills in capture peak and valleys for NO₂

6. Inputs Contribution

(NEMO): A 1-km anthropogenic emission dataset in the United States. Sci Data 9, 680 (2022). https://doi.org/10.1038/s41597-022-01790-9

Acknowledgements:

This study is sponsored by NOAA IIJA award NA22NES4050023D/119812-Z7646201 and ORAU's subaward 2023-1007-01 with CISESS.

Contacts:

Dr. Beiming Tang (beiming.tang@noaa.gov) Dr. Barry Baker (barry.baker@noaa.gov)