

Sang-Ik Oh¹⁾, Rokjin J. Park¹⁾, Hyeji Cha²⁾, Jhoon Kim²⁾

1) Seoul National University, 2) Yonsei University

⊠: ohsangik98@snu.ac.kr

Introduction

- The hydroxyl radical (OH) is a pivotal oxidant in the troposphere, determining the lifetime of pollutants such as CO, CH4, and NOx.
- However, <u>direct monitoring of OH through satellites is unavailable</u> due to its low concentration and very short lifetime.
- D. C. Anderson et al. (2023) introduced a <u>machine learning</u> methodology to infer daily-averaged tropospheric OH columns

Model evaluation

in the tropics, utilizing products from low Earth orbit satellites.

 Here, we estimate tropospheric OH column amounts in East Asia using GEMS observations and a machine learning method.

Method

Machine learning methodology (supervised learning)

- Supervised learning framework
 - : Trained with given pairs of features (X) and labels (Y), the model predicts labels with unseen features.
- XGBoost (eXtreme Gradient Boosting) algorithm
- : High performance in dealing with non-linear problems.

- The predicted TCOH from the XGBoost model is highly correlated with the original TCOH from the reanalysis data.
- However, the model predicted more homogeneous distributions than the reanalysis TCOH due to a shortage of high TCOH data.
 *e.g., underestimation in India.

Diurnal variation of TCOH in Asia

Data : Satellite & Reanalysis products

GEMS									TROPOMI	
NO ₂	НСНО	03	H ₂ O	Cloud	O ₃		Geo-info	СО		
Column amounts Fraction Center					Profile		Tropopause, Surface pressure	Column amount		
+ Lat, Lon, VZA, SZA (calculated off-line)						XGBoost model				
ECMWF Atmospheric Composition reanalysis 4										
Tropospheric column OH (TCOH)										

- GEMS (The Geostationary Environment Monitoring Spectrometer)
 : Hourly observations of trace gases (NO₂, SO₂, O₃, HCHO, CHOCHO)
- EAC4 (ECMWF Atmospheric Composition reanalysis 4)
 - Spatiotemporal resolution : 0.75°×0.75°, 25 layers, 3-hourly
 - Trace gases concentration reanalysis field

Training configuration

Training set : 2022.01. ~ 2022.12. (1 year, total 2,644,776 grids)

Predicted TCOH shows reasonable spatiotemporal variations in Asia.
Higher TCOH is found in polluted regions and at high solar latitudes.

Feature contribution : SHAP analysis

Test set : 2021.07. (1 month, total 250,362 grids)

Learning rate : 0.06, Max tree depth : 19, Boosting round : 500

Hyperparameters are tuned under grid-search with 5-fold cross validation.

Acknowledgment

This research was supported by a grant from the National Institute of Environmental Research (NIER) funded by the Korea Ministry of Environment (MOE) of the Republic of Korea (NIER-2024-04-02-028).

Summary

- This study uses GEMS products with a machine learning model to estimate diurnal variation of tropospheric column OH in Asia.
- The machine learning model successfully predicts diurnally varying TCOH compared to the reanalysis TCOH (R=0.90).
- SZA and H₂O columns are the two most dominant features in predicting TCOH, showing highly correlated SHAP values.