MAX-DOAS measurements during ASIA-AQ and comparisons with GEMS products

Hyeong-Ahn Kwon (hakwon@suwon.ac.kr)¹, Soi Ahn², Jan-Lukas Tirpitz³

¹University of Suwon, Hwaseong-si, Gyeonggi-do, South Korea; ²National Institute of Environmental Research (NIER), Incheon, South Korea; ³University of California, Los Angeles, CA, USA

1. Background & Objective

We evaluate MAX-DOAS measurements with in-situ observations during ASIA-AQ and validate GEMS products with MAX-DOAS measurements.

- Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a remote sensing technique for obtaining aerosol and trace gas vertical information. MAX-DOAS measures scattered sunlight at different elevation angles, leading to retrievals of vertical profiles for aerosol and trace gases as well as total column density.
- During ASIA-AQ, MAX-DOAS measurements were conducted at the University of Suwon (USW) with two azimuth angles (10° and 190°) and at the National Institute of Environmental Research with six azimuth angles (60°, 105°, 160°, 210°, 280°, and 320°).
- This study evaluates MAX-DOAS measurements with ground-based and airborne in-situ observations, and we validate GEMS products with MAX-DOAS measurements.

2. Site & instrument information

Site information

- USW site
 - 37.211°N, 126.980°E
 - Pandora/Skyspec-compact
- NIER site
 - 37.569°N, 126.637°E
 - Pandora/Skyspec-2D/Aeronet

Instrument information

	Site	Instrument	Spectral range	Elevation angle (°); Azimuth angle (°)	Retrieved species
	USW (Suwon)	Skyspec- compact (1D)	300–460 nm	1, 2, 3, 5, 15, 20, 30; 10, 190	NO ₂ , HCHO, O ₄ (aerosol), etc.
	NIER (Incheon)	Skyspec-2D	296–459 nm (UV); 408-554 nm (Vis)	1, 2, 3, 5, 15, 20, 40; 60, 105, 160, 210, 280, 320	NO ₂ , HCHO, O ₄ (aerosol), etc.

3. Data

MAX-DOAS 🗧

- NO₂ and aerosol extinction profiles, tropospheric NO₂ vertical column density (VCD), and aerosol optical depth (AOD)
- USW and NIER sites
- Quality check
 - NO₂: degrees of freedom > 2 and relative differences of measured and estimated NO₂ dSCDs < 50%
 - Aerosol extinction: degrees of freedom >1 and relative differences of measured and estimated $O_4 dSCDs < 50\%$

Aeronet 🗸

- AOD at 380 nm
- Suwon and NIER sites

GEMS v2.0

• NO₂ and AOD at 354 nm

Air Korea 🗸

- In-situ NO₂
- Gosaek, Hyangnam near USW
- Wondang, Chengna, Gyeongin Port near NIER

7. MAX-DOAS vs GEMS NO₂ VCD

4. Retrieval method

- RAPSODI is an optimal estimation tool with a radiative transfer model (VLIDORT) to retrieve trace gases and aerosol extinction profiles using measured dSCDs at different elevation angles (Tirpitz et al., 2022). • The Henyey-Greenstein parameterization of aerosols and a wavelengthindependent surface albedo are assumed.
- Fermi and exponential a priori profiles are applied for NO₂ and aerosol extinction, respectively.

Parameters	A priori profile			
Species	NO_2	Aerosol extinction		
Profile shape	Fermi profile (Layer height: 2km)	Exponential (Scale height: 1km)		
Total column	5×10^{16} molec. cm ⁻²	0.25		

	•	٠		1000/
Δ	nr1(\r1	orror	
\square	pin	ЛТ	UIUI	100/0

100%

5. MAX-DOAS vs Air Korea NO₂ surface concentration

12

- in measurement locations. (See the number 2 panel)
- However, there are some offsets (y-intercept) in MAX-DOAS measurements, ranging from -1.7 to -1.3 ppbv at USW and -4.3 to -3.1 ppbv at NIER, respectively.

6. MAX-DOAS NO₂ diurnal variations

+ MAX-DOAS vs GEMS HCHO VCD

9. Summary

- NO₂ mixing ratios from MAX-DOAS have good agreement with insitu measurements from Air Korea despite negative biases and offsets.
- MAX-DOAS AOD products are well correlated with those of Aeronet.
- GEMS NO₂ VCDs have the offset of ~ 6.8×10^{15} molecules cm⁻² despite corrections of MAX-DOAS offsets. GEMS AOD shows good agreement with MAX-DOAS measurements.

This work was supported by KEITI through Project for developing an observation-based GHG emissions geospatial information map, funded by Korea (MOE) (RS-2023-00232066) and by NRF grant funded by the Korea government (MSIT) (RS-2023-00253460).