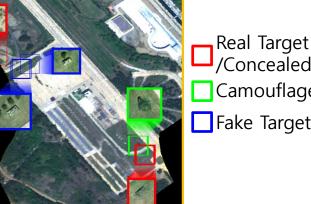
Development of the Small Satellite Constellation for Greenhouse Gas Detection

Jinsuk Hong^a*, Munshin Jo^a, Seongan Kwon^a, Yonggeon Lee^a, Dai Ho Ko^b ^A Satellite System 3 Team, Hanwha Systems, Yongin, 17121, Republic of Korea ^b Korea Aero-space Research Institute, Daejeon, Republic of Korea

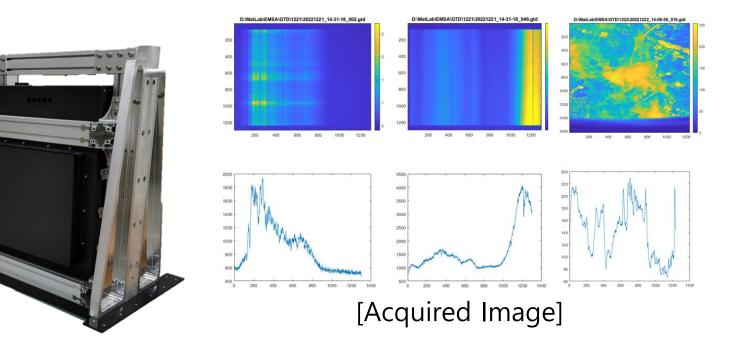
* js10.hong@gmail.com


Abstract

- To minimize the impact of the greenhouse gas effectively to the global boiling era, it is crucial to detect the greenhouse gas emission source and its emission rate.
- Hanwha System is developing the small satellite constellation for methane detection as a satellite program initiated from NIER.

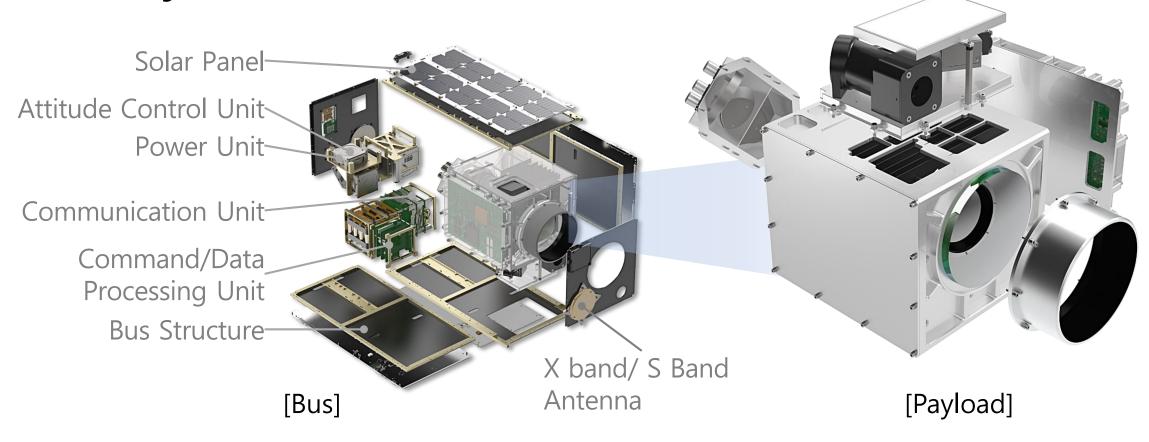
HSC's Capability of Hyperspectral Remote Sensing

Airborne Hyperspectral Imager for Target Recognition


/Concealed Target amouflaged target Fake Target

[Acquired Image]

- Korea-first hyperspectral Imager
- VNIR: 400-900 nm, SWIR: 900-1700 nm
- TMA fore optics
- Offner spectrometer with Grating


	VNIR	SWIR
MTF	0.31	0.21
Keystone [Pixel]	0.05	0.17
Smile [Pixel]	0.11	0.26
Spectral Resolution [nm]	3.94	6.58

EMSA – Environment Monitoring Spectrometer for Aircraft Platform

- Airborne Hyperspectral Imager for Air Pollution Monitoring
- Korean Version of GeoTASO (GEMS)
- UV: 290nm-415 nm, VIS: 415-695 nm
- TMA fore optics
- Offner relay spectrometer with Grating

Greenhouse Gas Monitoring Satellite Bus/Payload

Korea-first Methane detection small satellite constellation

Sun Orientation

Stand-by

for Power Genera

- SWIR channel Hyperspectral Imager
- GSD~100 m, Spectral Resolution 0.1nm(TBD)
- In-house development of 16U Satellite including bus and payload

Operation Concept

Attitude Control for Mission

Initial Communication and In-Orbit Tests

Deploy and Angular Velocity Stabilization

Initial Orbit

Iteration during Mission Life time Mission (Data Acquisition)

Satellite

S Band Control TC/TM

S Band

X Band

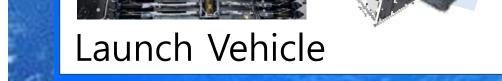

Mission Complete/ Orbital Disposal at EOL

X Band Acquired Data Transmission

Greenhouse Gas Observation and Emission Monitoring

Satellite – Launch Vehicle Integration

a dealer a stranger



16U Standard Platform

•Utilizing commercial standard X-pod •Absorbing shock and vibration during Launch Satellite-Ground Station Integration

•Frequency : X Band

•Transmission Speed : 50 Mbps **Ground Station**

Conclusion

- Hanwha Systems(HSC), a leading company of Korea in the space industry, has been developing several remote sensing hyperspectral imagers, and will develop small satellite constellation for greenhouse gas detection.
- The 1st FM will be launched in 2027 and rest of the FMs will be launched in 2028 to form a constellation of greenhouse gas monitoring small satellites.

Acknowledgement

This work was financially supported by the National Institute of Environmental Research (**NIER**), funded by the Ministry of Environment (**ME**) of the Republic of Korea. (NIER-2024-04-02-025, NIER-2024-04-02-026)

