

Change in Air Mass Factor of GEMS domain through input updates in Chemical Transport Model

TEMPO/GEMS Joint Science Team Workshop August 26-30, 2024

Yoonbae Chung and Rokjin Park Seoul National University

⊠:ybchung@snu.ac.kr

- Concentration of air pollutants such as NO_2 and SO_2 follows a decreasing trend in East Asia showing a consistent change in atmospheric composition
- Continuous updates in CTM is needed keep up with the to changing trends in air quality and

3. Pandonia Global Network

VCD measurement data of February, 2023 were collected from the Pandonia Global Network (High quality assured quality flag was applied)

to produce reliable AMF

Method

	GEOS-Chem (Prior)	GEOS-Chem (Update)					
Resolution	0.25° x 0.3125°, 47 layers						
Meteorological data	GEOSFP (0.25° x 0.3125°					
Target period	2020.08 ~ 2021.07	2023.02					
Anthropogenic emission	KORUSv5 (2015)	AQNEAv3 (2019)					

 Updated emission inventory AQNEAv3 and up-to-date meteorological data were used as input data for GEOS-Chem version 13.0.0

Result

Evaluation with ground observations

1. Surface Mixing Ratio

- Monthly average VCD for NO_2 , SO_2 were evaluated with both model outputs
- In most sites, both NO_2 and SO_2 VCD leaned closer to the observation \bullet value showing a decrease

Change in Air Mass Factor NO_2

Observation data were collected from the China Air Quality Historical Data Website and Airkorea

AQNEAv3 ((2023.02)
-----------	-----------

KORUSv5 (2021.02)

	Ме	an	Р	RMSE	NMB	NME	NO ₂	Ме	Mean		DMGE		
NO ₂	OBS	MOD	R					OBS	MOD	ĸ	RIVIJE		
Korea	19.8	14.5	0.63	10.9	-26.6%	41.9%	Korea	1 8.8	17.6	0.69	10.1	-6.7%	40.3%
China	15.9	14.7	0.56	8.65	-7.05%	42.5%	China	13.0	16.7	0.55	10.3	27.9%	60.5%
	Mean						60		Mean				
	Ме	an	_	DMOE			60	Me	ean	_	DMOE		
SO ₂	Me OBS	an MOD	R	RMSE	NMB	NME	SO ₂	Me OBS	ean MOD	R	RMSE	NMB	NME
SO ₂ Korea	Me OBS 2.78	an MOD 2.54	R 0.24	RMSE 3.27	NMB -8.67%	NME 74.5%	SO ₂ Kore	Me OBS 3.35	ean MOD 3.72	R 0.33	RMSE 4.42	NMB 11.3%	NME 72.9%

- Prior model results showed overestimation of both SO₂ and NO₂ concentration in China whereas NO₂ concentration in Korea showed underestimation
- With the emission inventory update the NO₂, SO₂ concentration in each regions showed an overall decrease leading to improvement from previous overestimation
- 2. MAX-DOAS observation
- Observations data was collected from two sites (HUFS, KU) during the ASIA-AQ campaign.
- Diurnal pattern was compared for the corresponding dates (2.14 ~ 2.28)

the area, the upper level showed high relative difference.

SO_2

- 8.63% across the domain with high change rate focused on the Southern China and the Northern Pacific.
- While surface SO₂ concentration has decreased in the Northern Pacific, change in upper level vertical shape factor led to increase in AMF

- Model results showed similar pattern with increasement in the afternoon
- Due to reduction in NO_x emission, the NO₂ VCD showed an overall **decrease** leading to smaller value of NMB

Conclusion

- This study showed that input updates in CTM model could lead to significant change in AMF for NO₂ and SO₂
- Through updating the CTM results, it is expected to improve its performance as well as providing reliable data for satellite retrievals
- Further evaluation with simulation on different seasons as well as its effect on other gaseous species need to be examined

Acknowledgement

This research was supported by a grant from the Nation Institute of Environmental Research (NIER) funded by the Korea Ministry of Environment (MOE) of the Republic of Korea (NIER-2024-04-02-028).