
GEMS-TEMPO workshop (26~30 Aug., 2024)

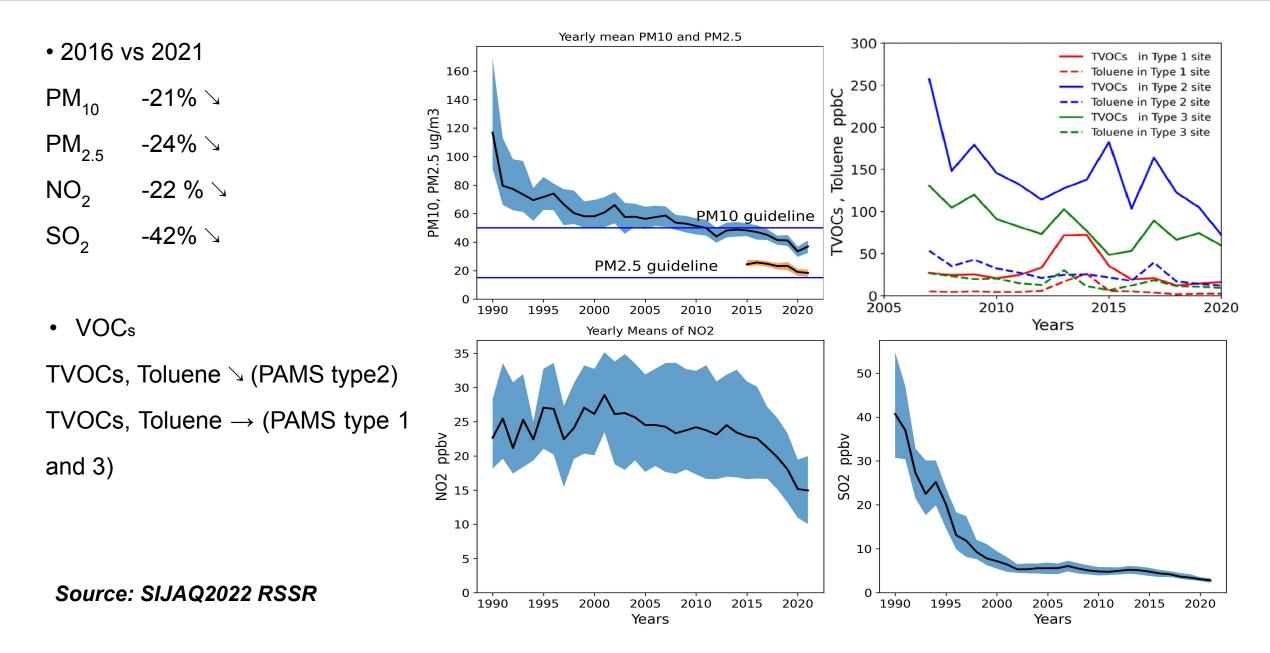
SIJAQ/ASIA-AQ

<u>Satellite Integrated Joint Monitoring for Air Quality study (SIJAQ)</u> <u>Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ)</u>

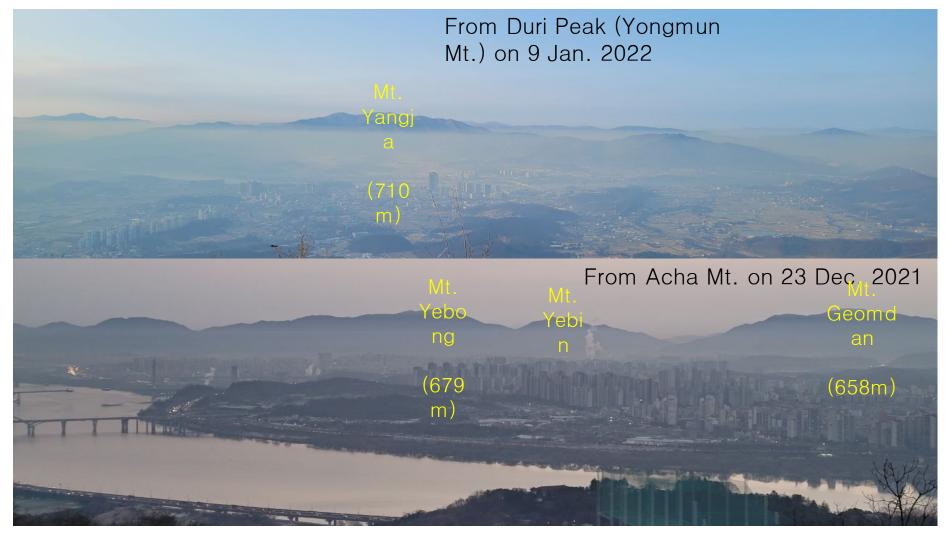
National Institute of Environmental Research Environmental Satellite Center, SIJAQ team

GMAP & SIJAQ overview

SIJAQ : Satellite Integrated Joint monitoring (Studies) of Air Quality **Pre-SIJAQ(GMAP)**: GEMS Map of Air Pollution


Background

•Succession of KORUS-AQ (2016.5~6)


•In depth analysis on high PM pollution in winterValidaiton of Geostationary Environment Monitoring Spectrometer (GEMS), the world's first Geostationary Earth Orbit (GEO) environmental satellite

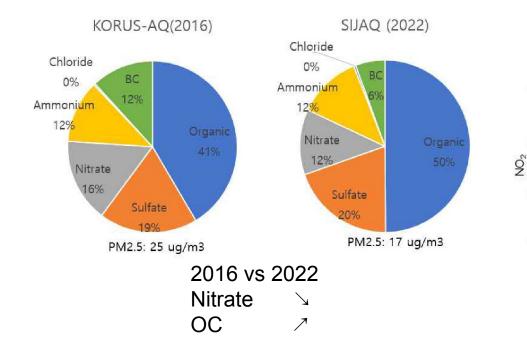
Time schedule for SIJ	AQ and GMAP		
Pre-GMAP	1 st GMAP	2 nd GMAP	Main campaign SIJAQ
2020. 4~5	2020.10.12~11.27	2021.10~11	2022.10~2023.06 → 2022.5~8, 2024.2~3

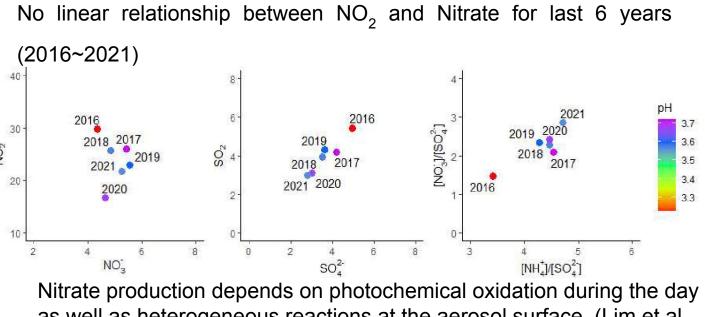
SIJAQ background

Winter smog in stable boundary layer

Source: Prof. Moonsoo Park(Sejong Univ.)

Spring smog in boundary layer

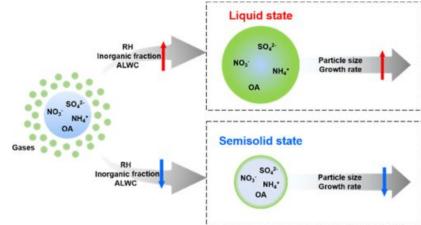

20 April 2023



DoiSuthep as an index to measure the intensity of PM

> Source: AiroTEC : Asian Air Quality Operations Center by Space Technology, Geo-informatics & Environmental Engineering, 2023

SIJAQ background

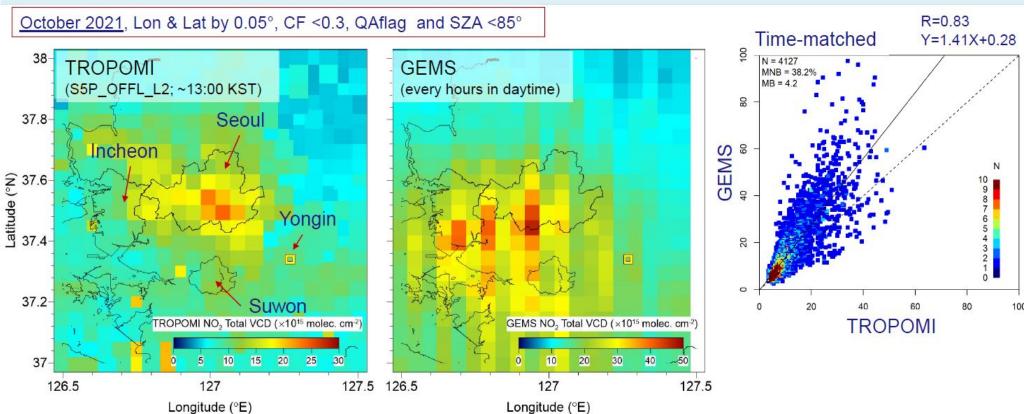


Nitrate production depends on photochemical oxidation during the day as well as heterogeneous reactions at the aerosol surface. (Lim et al., 2022).

When high PM occurs, aerosols are in a liquid state and have a larger volume mean diameter

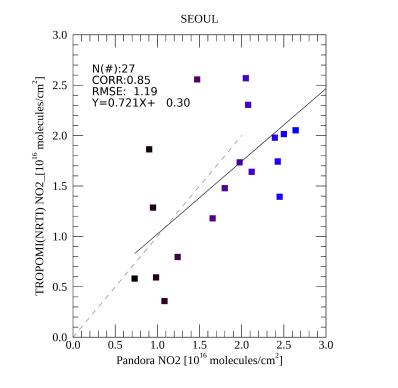
(Song et al., 2022)

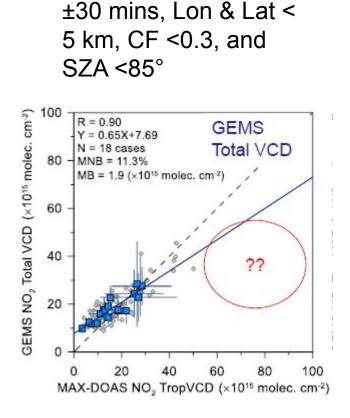
The physical state of aerosols affects the reaction with gaseous pollutants and heterogeneous reaction


Source: SIJAQ2022 RSSR

SIJAQ background

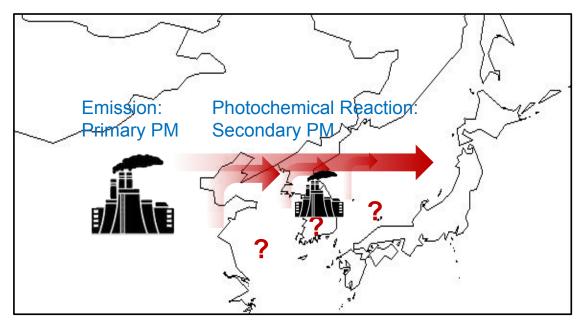
Results

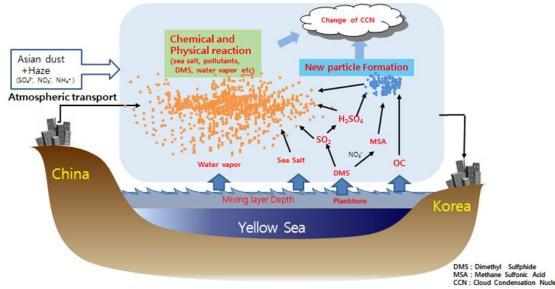

Spatial distribution of NO₂ Total VCD over SMA region


- Slightly different spatial distribution pattern of NO₂ Total VCD between TROPOMI and GEMS, due to different sampling time.
- Time-matched GEMS NO₂ Total VCD > TROPOMI NO₂ Total VCD

High correlation, low bias, and high scatter (or rmse) for NO₂ VCD

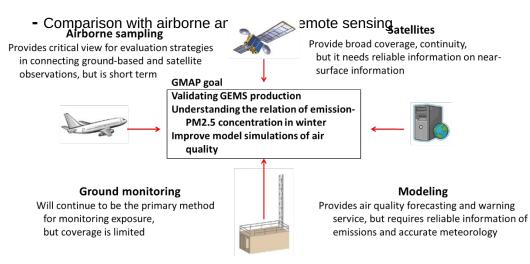
IUP-UB GEMS vs. MAX-DOAS tropospheric NO₂, R = 10km 9 RMA Regression: 1.04E+14 + x * 0.72 8 [1016 molec cm⁻²] 7 6 5 IUP-UB GEMS NO2 3 2 10 km 8 0 2 3 4 5 6 7 9 MAX-DOAS NO₂ [10¹⁶ molec cm⁻²]


Source: Andreas Richter



Source: Yongjoo Choi

Source: Sangwoo Kim


Satellite Integrated Joint Monitoring for Air Quality study (SIJAQ)

Purpose

- Characterizing hot spots in East Asia
 - Urban pollution, industrial complex, coal-fire power plant, biomass burning, volcanic eruption, wild fire, etc.
- Investigating processes controlling high PM2.5 events in winter
 - Unidentified aerosol formation mechanism (heterogeneous reaction, nighttime chemistry, meidum-range transport, etc.
- Analyzing the impact of emission change
- Recent change in energy-related and agricultural emissions in East Asia
- Validating GEMS performance beyond Korea

SIJAQ/ASIA-AQ 1900D flight

Instrument	Measuring item	
	Organics, Nitrate, Sulfate, Ammonium,	
HR-ToF-AMS	Chloride	
SP2	rBC, Black carbon (50-500nm)	
PCASP	Number concentration	
PTR-ToF-MS	VOCs	
CIMS	SO ₂	
LGR NH ₃	NH3	
LGR CO	CO, CO ₂ , CH ₄	1
Teledyne NO ₂	NO ₂	
Teledyne O ₃	0 ₃	
TILDAS	нсно	
AIMMS-30	GPS, Temp. Hum., Pres. Widn	
	DI	

te man an ingi

6

Instrument

Teledyne T500U

HUFS

BrechtelTAP

Thermo43iQTL

Thermo49iQ

LGR EAA-911

LGR

OPC

AIMMS 30

MCEA1-911

Measuring item

NO₂

NO₂ (fast)

Black carbon

 SO_2

03

NH₃

 CO, CO_2, CH_4

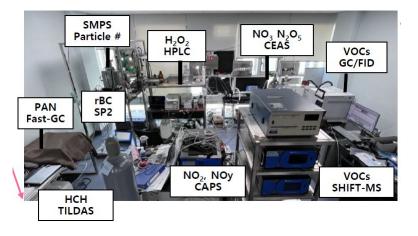
PM_{2.5}

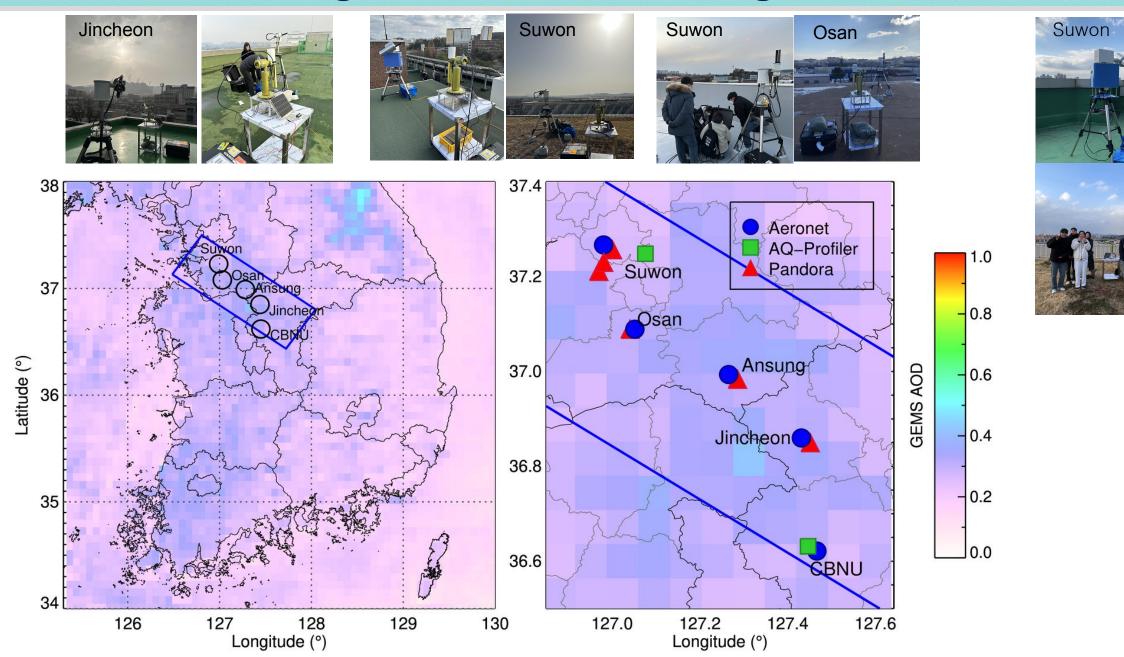
3-D wind

Instrument	Measuring item
Picarro/CRDS-2401m	CO ₂ , CH ₄ , CO, H ₂ O
Flask sampling	δ^{13} C-CO ₂ , δ^{14} C-CO ₂ , δ^{13} C-CH ₄

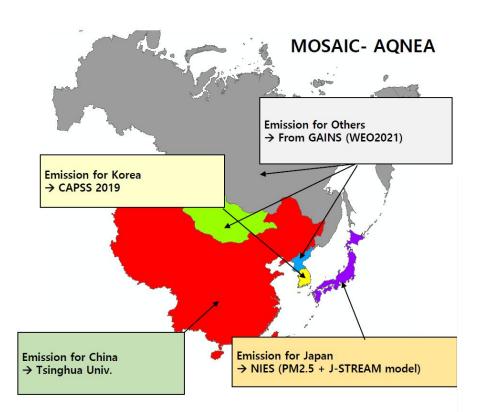
Instrument	Measuring item
EMSA	Trace gas column densities of NO2 and CH2O

SIJAQ/ASIA-AQ ground measurement



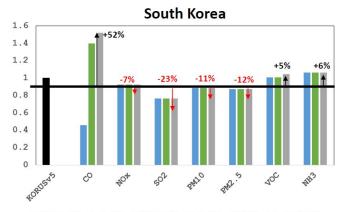

Absorbent tube (EPA TO-17 method, TenaxTA and Carbotrap (AirToxictube))

Chemical species/(Instrument)	Korea Univ.	Anmyundo	Ansan	Backryungdo
VOCs(PTR)	Ø	Ø	Ø	
VOCs(PAMs)	Ø			O
O ₃ CO SO ₂	Ø	Ø	Ø	O
NO NOx	Ø	Ø	Ø	Ø
NOy	Ø	Ø	Ø	Ø
N ₂ O ₅	Ø	Ø		
HNO ₃	Ø			
NH ₃	Ø	Ø	Ø	Ø
Inorganic & organic composition(AMS)	Ø	Ø	Ø	Ø
Inorganic composition	Ø	Ø	Ø	Ø
Number concentration	Ø	Ø	Ø	O
BC	Ø	Ø	Ø	Ø
PBL height	Ø			

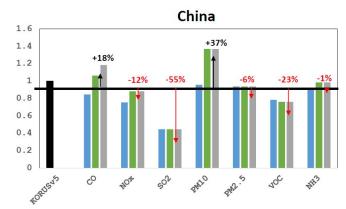


SIJAQ/ASIA-AQ ground remote sensing

SIJAQ/ASIA–AQ emission inventory \Rightarrow AQNEA v3


*AQNEA - Air Quality in NorthEast Asia * ASIA-AQv1 = MOSAIC- AQNEA v1

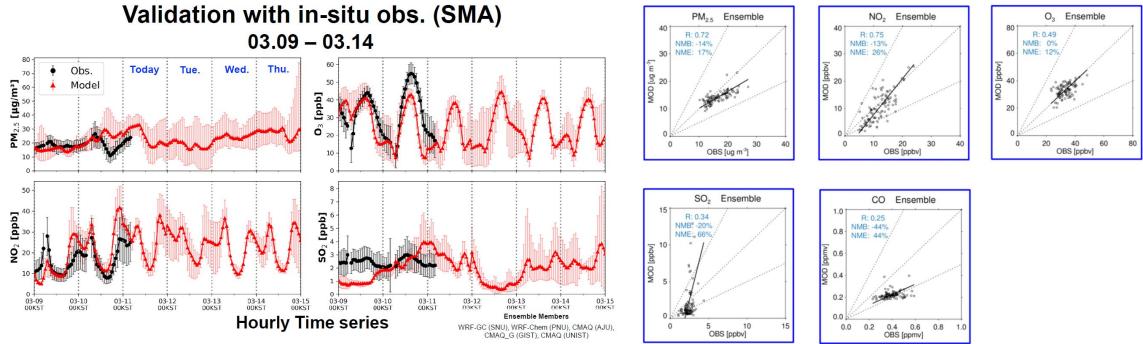
<AQNEA v1 Emission Inventory Sectors>


Tier 1	Tier 2
Power	Power, Energy
Industry	Industrial (Combustion + Process), Fugitive (incl. refinery and gas stations)
Residential	Residential + Commercial
On-road	Road transport
Non-road	Off-road vehicles and other machinery + Railways
Agriculture	Agriculture
Solvents	Solvent use + Paint use +
Other	Waste (incl. incineration facility) + etc.

ASIA-AQ v1.0 vs. v2.0 vs. v3.0

ASIA-AQ v1.0 EI ASIA-AQ v2.0 EI ASIA-AQ v3.0 EI

S. Korea (Gg/yr)	со	NOx	SO2	PM ₁₀	PM _{2.5}	voc	NH₃
KORUSv5	1,549	1,076	342	230	96	996	297
ASIA-AQ v1.0 EI	711	997	262	204	84	1,005	316
ASIA-AQ v2.0 EI	2,167	997	262	204	84	1005	316
ASIA-AQ v3.0 EI	2,358	997	262	204	84	1,042	316

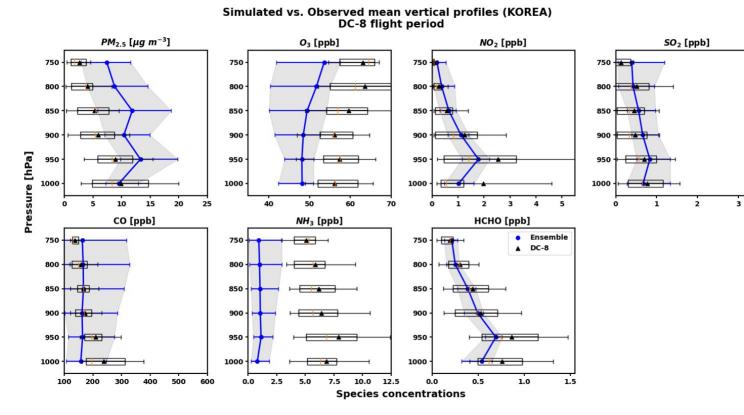


■ASIA-AQ v1.0 EI ■ASIA-AQ v2.0 EI ■ASIA-AQ v3.0 EI

China (Gg/yr)	со	NOx	SO ₂	PM ₁₀	PM _{2.5}	voc	NH₃
KORUSv5	141,937	22,514	13,374	10,798	8,115	28,356	10,327
ASIA-AQ v1.0 EI	120,180	17,004	5,983	10,341	7,617	22,260	9,341
ASIA-AQ v2.0 EI	150,838	19,894	5,983	14,787	7,617	21,592	10,182
ASIA-AQ v3.0 EI	168,135	19,894	5,983	14,787	7,617	21,592	10,182

SIJAQ/ASIA−AQ emission inventory ⇒ Forward

validation



The scatter plots of the ensemble (MOD) and observations (OBS) are consistent, but MOD tends to underestimate OBS at specific high concentrations.

Note that looking at the individual model results for NO2 simulation, the correlation coefficients are high at 0.57 to 0.75, indicating that the most models simulate the high NO2 concentrations in the Seoul metropolitan area quite well

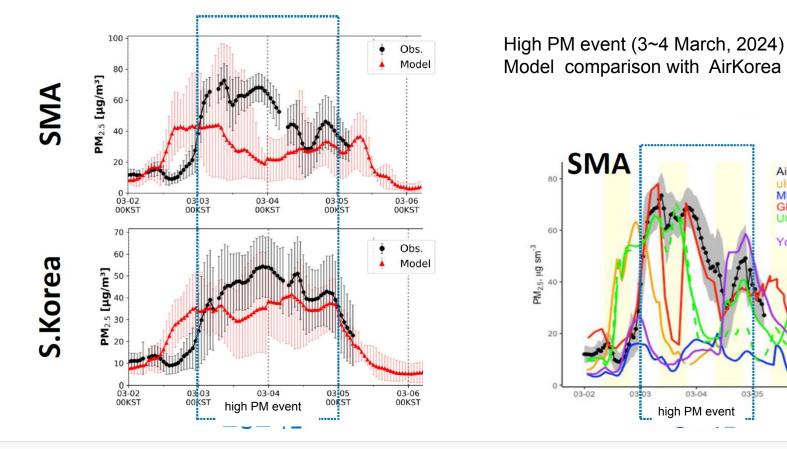
SIJAQ/ASIA−AQ emission inventory ⇒ Forward

validation

In the case of PM2.5, the observed and predicted values showed a clear difference depending on the altitude. The predicted values of the ensemble model were higher than the observed values at all altitudes. The difference between them was greater in the lower and middle layers of the atmosphere than at the ground surface.

In the case of O3, the ensemble model showed a tendency to under-simulate the observed concentration by about 10 ppbv at all altitudes.

In the case of NO2, the observed values and the predicted values of the model were similar at all altitude. In particular, the observed values were the highest at an altitude of 950 hPa, and the ensemble model also showed the highest concentration.


In the case of CO, the ensemble model showed similar values to the observed values at all altitudes.

In the case of NH3, the vertical concentration distribution showed the largest difference between the observed values and the predicted values of the model. The NH3 concentrations observed at DC-8 were outside the range of the ensemble model predictions as well as the inter-model range at all altitudes(NMB: -77%).

For HCHO, the observations and the model were in fairly good agreement at most altitudes.

For SO2, there was a high degree of agreement between the observed and predicted values at most altitudes.

SIJAQ/ASIA−AQ emission inventory ⇒ Forward validation

The ensemble model predictions showed under-simulation compared to the observations. In the case of the ensemble predictions, both the metropolitan area and South Korea showed a maximum concentration of about 40 μ g m⁻³, showing a large difference from the observations.

period During the of high concentration of particulate matter, the GEOS-FP/CF model simulated the highest concentrations similar the observations, but the to simulated PM2.5 concentrations large variability even showed during the high concentration period. In addition, in the case of UCLA WRF-Chem, the onset and end of the high concentration particulate matter phenomenon faster than the appeared observations, suggesting that the uncertainty of the synoptic meteorological field was large. Other models did not simulate the concentration particulate high matter phenomenon at all, or the high concentration ended in a short period (uIOWA model).

AirKorea

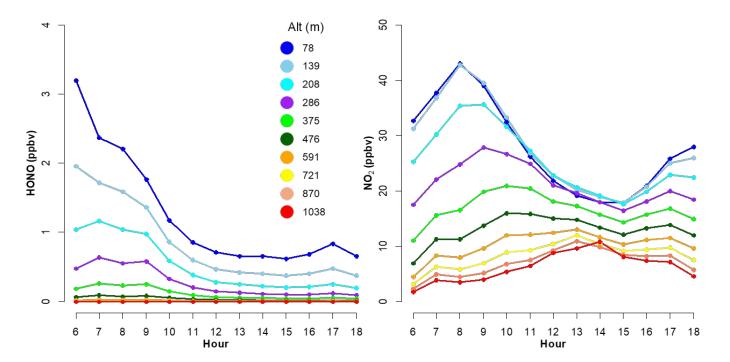
ulowa MUSICA

onsei WRF-Chem

03-06

KST

03-07

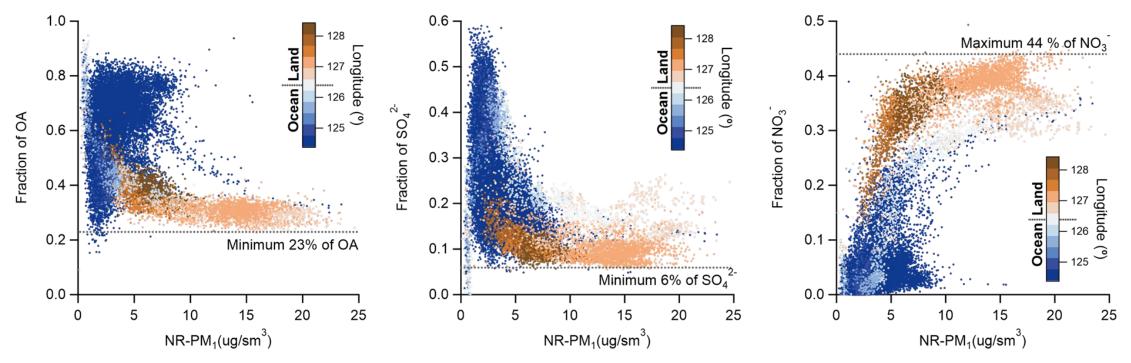

PM _{2.5}	Temp	RH	O ₃	NO ₂	СО	SO ₂	CI-	NO ₃ -	SO42-	Na*	NH ₄ +	K⁺	Ca ²⁺	
	Corr: 0.111	Corr: 0.130	Corr. -0.182	Corr: -0.143	Corr: 0.771***	Corr. 0.514***	Corr: 0.495***	Corr: 0.887***	Corr: 0.851***	Corr: -0.012	Corr: 0.945***	Corr: 0.459***	Corr. -0.049	
	Л	Corr: 0.048	Corr: 0.109	Corr: -0.038	Corr: 0.008	Corr: -0.051	Corr: 0.058	Corr: 0.111	Corr: 0.072	Corr: 0.194.	Corr: 0.093	Corr: -0.015	Corr: -0.057	
ilin-		\wedge	Corr: -0.338***	Corr: 0.023	Corr: 0.237*	Corr: -0.066	Corr: 0.028	Corr. 0.149	Corr. 0.161	Corr: -0.121	Corr: 0.169.	Corr: 0.103	Corr: -0.488***	
	4	*	\bigwedge	Corr: 0.098	Corr: -0.815***	Corr: -0.502***	Corr: -0.042	Corr: -0.239*	Corr: 0.031	Corr: 0,147	Corr: -0,166	Corr: -0.008	Corr: 0.283**	
	•		•••		Corr. -0.113	Corr: -0.093	Corr: 0.296**	Corr: -0.120	Corr: -0.111	Corr: 0.518***	Corr: -0.082	Corr: 0.050	Corr: 0.338***	
A.	-			,	\bigwedge	Corr: 0.748***	Corr: 0.365***	Corr: 0.738***	Corr: 0.585***	Corr: -0.070	Corr: 0.724***	Corr: 0.422***	Corr: -0.118	
×	The second se				1	\sim	Corr: 0.108	Corr: 0.590***	Corr: 0.282**	Corr: -0.112	Corr: 0.484***	Corr: 0.218*	Corr: 0.130	
and the second	-	<u>.</u> 		1	and the second second	-	\bigwedge	Corr: 0.442***	Corr: 0.429***	Corr: 0.553***	Corr: 0.527***	Corr: 0.329**	Corr: 0.087	
Jerry .		NY.			1	J.	-	\sim	Corr: 0.653***	Corr: -0.002	Corr: 0.952***	Corr: 0.256*	Corr: -0.029	
NAN	-		-		Mr.	-	-	A.	\bigwedge	Corr: 0.068	Corr: 0.790***	Corr: 0.595***	Corr: 0,031	
							æ?),	<u>.</u>	Λ	Corr: 0.044	Corr: 0.080	Corr: 0.478***	
f.			-	 :	1	1	1	1 and	34 .	<u>.</u>	\bigwedge	Corr: 0.306**	Corr: -0.048	
-									<u></u>			h	Corr: 0.020	
		-		1	-	-	4-	***	-		-	-	Λ	

PM_{2.5} 0~35 μg/m³ vs PM_{2.5} 35 μg/m³

	Ме	an
ΡΜ _{2.5} (μg/m³)	0 ~ 35	>35
Temp (°C)	4.5	4.5
RH (%)	54.6	58.9
WS (m/s)	1.7	1.4
NO ³⁻ (µg/m ³)	9.4	30.1
SO ₄ ²⁻ (µg/m ³)	3.6	8.1
NH ₄ ⁺ (μg/m ³)	4.4	11.4
Cl ⁻ (µg/m³)	0.5	0.9
Na⁺ (µg/m³)	0.3	0.3
K⁺ (µg/m³)	0.3	0.8
Ca ²⁺ (µg/m ³)	0.4	0.3
Mg ²⁺ (µg/m ³)	0.1	0.1

4

Vertical profiles of HONO and NO 2

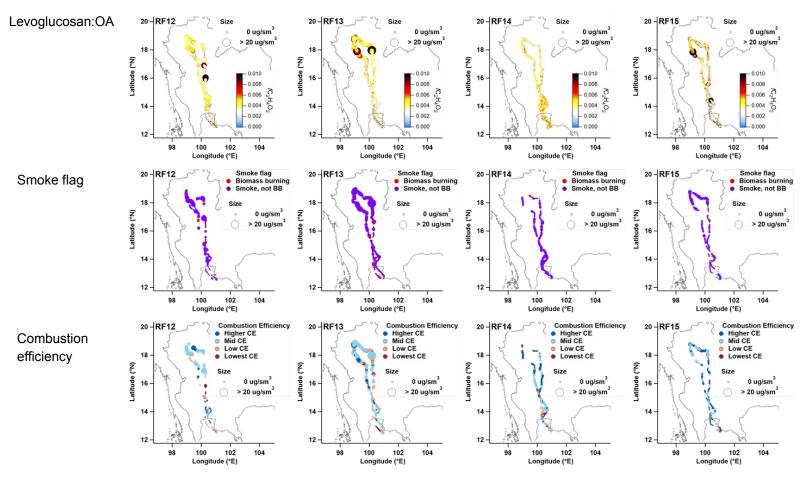


In the case of NO_2 , the concentrations increased at low altitudes during the morning rush hour and decreased as the PBL grew during the day, whereas concentrations at high altitudes increased progressively, suggesting that diurnal variations in ground-level air pollutants may differ from those in the upper atmosphere.

In the case of HONO, the concentrations were highest at night regardless of altitude and showed a pattern of decreasing during the day due to photolysis

SIJAQ/ASIA-AQ

Analysis of chemical composition characteristics below 1 km altitude among airborne observations during the ASIA-AQ period.

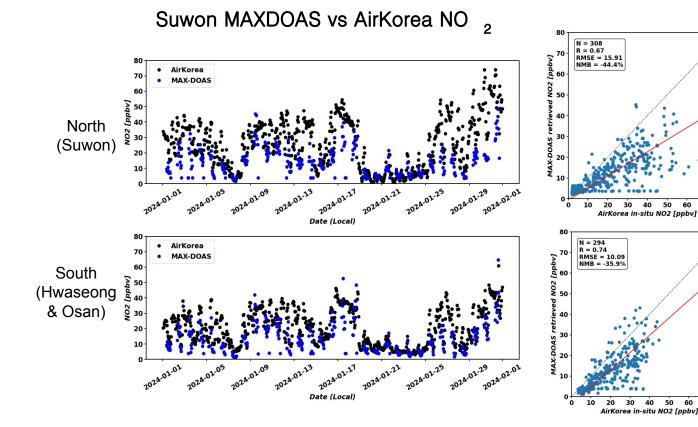


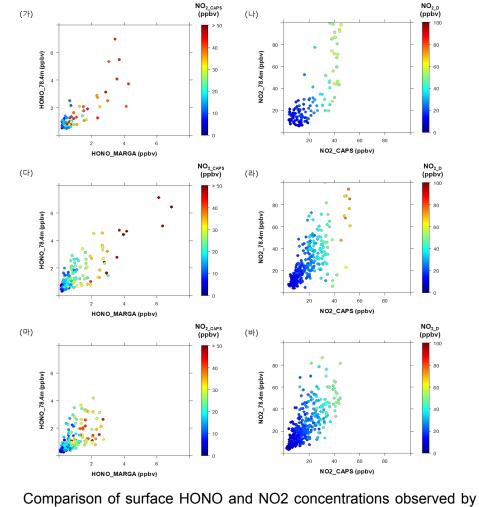
In Korea, **OA** showed a clear boundary between the sea and the inland. In the West Sea, OA was distributed higher as PM1.0 increased, reaching a composition ratio of OA in PM1.0 of approximately 80%. In the inland, OA decreased as PM1.0 increased, and especially in the area near Seoul (126.7~127°E), which is the city center, it decreased to approximately 23%.

Sulfate was observed to have a higher composition ratio as PM1.0 decreased, and there was no particular difference between the land and the sea.

Nitrate showed a composition ratio opposite to OA and sulfate. Nitrate existed very limitedly in PM1.0 when the concentration was low, and was observed to have a lower composition ratio in the sea than in the inland. Nitrate increased its chemical composition ratio to about 44% along with the increase in PM1.0 concentration. This means that nitrate is a major chemical component that has a greater impact on the increase in PM1.0 inland in Korea than OA and sulfate, and

SIJAQ/ASIA-AQ


The levoglucosan:OA ratios measured by HR-ToF-AMS were above 0.003 in most areas, indicating the influence of **biomass burning**.


In the smoke flags, most areas of Thailand, including Chiang Mai, were analyzed as **simple smoke, not biomass burning**, and the combustion efficiency was also analyzed as high or medium combustion efficiency, not the lowest combustion efficiency, which is the influence of biomass burning

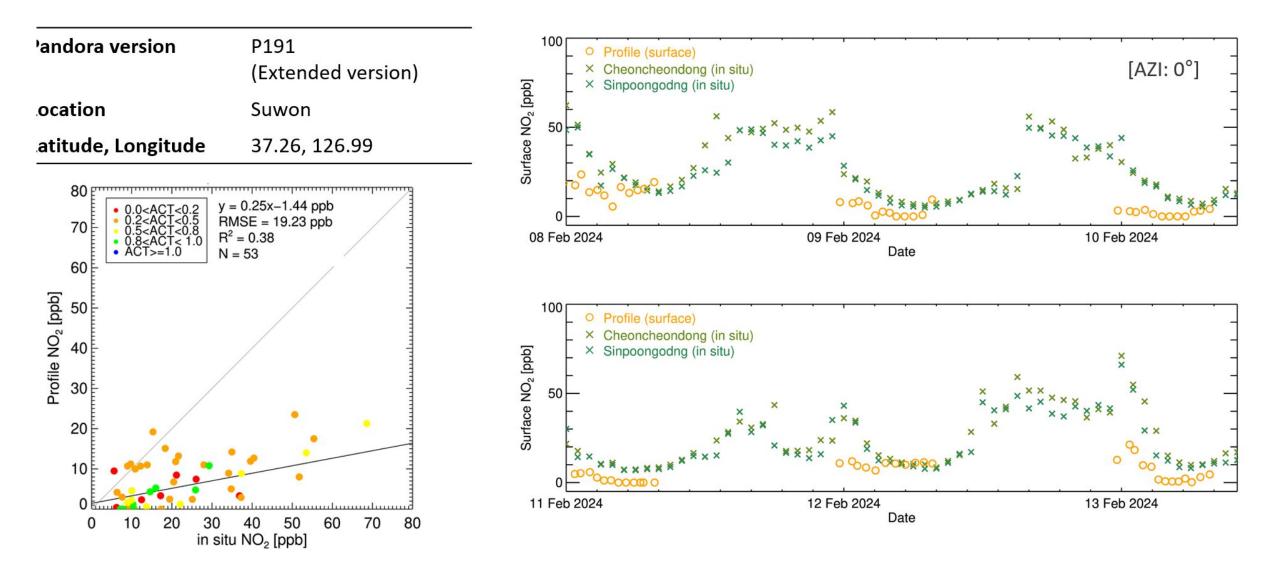
The smoke flags were classified into three types: non-combustion influence, smoke influence, and biomass burning, respectively, through 60-s correlation analysis of the increase ratios of CO:CO2 and CH4:CO. Combustion efficiency was classified into five levels: high combustion efficiency, medium combustion efficiency, low combustion efficiency, and the lowest combustion efficiency (biological combustion), respectively, through 60-s correlation analysis of the increase ratio of CO:CO2.

DOAS NO, profile validation

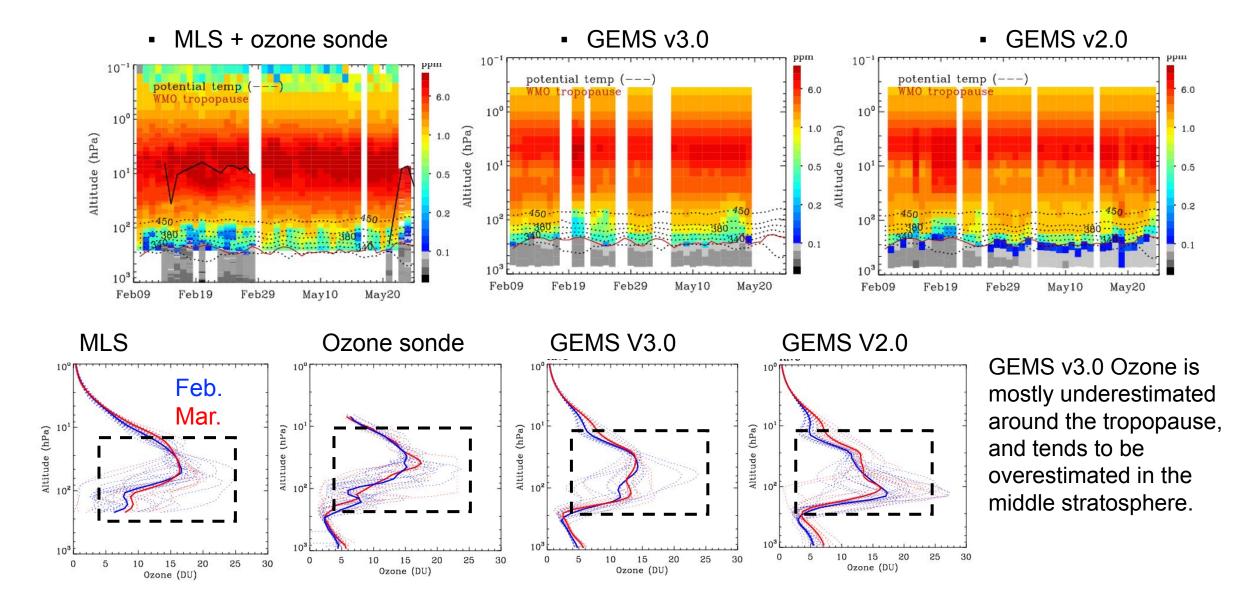
NO2, HCHO, O3, vertical profiles and aerosol characteristics (aerosol optical thickness, single-scattering albedo, particle size distribution, etc.) during the SIJAQ period

50

60


70

70 80


80

DOAS and MARGA(CL) in (가) January, (나) February, and (다) March

GEMS NO, profile validation

SEMS O₃ profile validation

- SIJAQ data is being thoroughly validated and is expected to be released by November this year.
- In-depth analysis of ground/airborne/remote/modeling data is being conducted for winter PM formation and GEMS validation.
- The Korean RSSR team has been formed and will begin work in earnest in September.

