NO₂ Stratosphere-Troposphere Separation Estimated from UV and Visible Retrievals

Kai Yang – UMD Shobha Kondragunta – NOAA Zigang Wei – IMSG @ NOAA Lawrence E. Flynn – NOAA

TEMPO-GEMS Joint Science Team Workshop August 26 – 30, 2024

GeoXO ACX NO₂ Algorithm Development GeoX

- We are developing an advanced NO₂ algorithm for GeoXO ACX processing and demonstrating its accuracy using proxy data.
- We plan to make a series of algorithm advancements, from correcting imperfections in spectral measurements to enhancing algorithmic physics:
 - Perfecting techniques to correct spectral measurements
 - wavelength registrations
 - o instrument spectral responses
 - o anomalous pixels
 - calibration biases
 - common mode spectra
 - Accurate algorithm physics implementation
 - Stratosphere-troposphere separation (STS)
 - Surface reflection (inclusion of BRDF)
 - \circ Explicit treatment of aerosols

Review of STS

STS Schemes

- Estimated from stratospheric NO₂ columns over regions with negligible tropospheric NO₂ columns (e.g., reference sectors, STREAM, Geddes et al., 2018, ...)
- 2. Stratospheric NO₂ fields from chemical transport models (CTMs) (e.g., GEOS-CF, TM5, CAMS,)

Diurnal variations of NO₂ profiles 2023-01-01, GEOS-CF

Stratosphere-Troposphere Separation (STS)

Deficiencies

- Small-scale variations in stratospheric NO₂ fields; insufficient nearby clean regions
- Biases often exist in the stratospheric NO₂ fields from CTMs and satellite retrievals.

ACX NO₂ Algorithm on GEMS 2023-03-30_0045

Stratospheric NO₂

Tropospheric NO₂

TEMPO-GEMS Joint Science Team Workshop

August 26 – 30, 2024

Theoretical Basis for NO₂ STS from Joint UV-VIS Retrievals

NO₂ Measurement Sensitivity:

- 1. VIS and UV more sensitive to strat NO₂ than tropo NO₂
- 2. UV strat NO_2 sensitivity is 4.6 times that of tropo NO_2 (low reflectivity scenes)
- 3. UV provide closer estimates of strat NO₂
- VIS slant NO₂ >= UV slant NO₂
 (low reflectivity scenes)

TEMPO-GEMS Joint Science Team Workshop

August 26 – 30, 2024

Tropospheric NO₂ from UV (NOAA-20 OMPS)Geod

Monthly means of January 2024 show significant enhancements of NO₂ over major industrial and densely populated areas. This result illustrates the OMPS's capability in capturing spatialtemporal variations of tropospheric NO₂ accurately, therefore its usefulness for various applications.

6

Joint UV-Vis Retrieval to Separate Ge Stratospheric and Tropospheric NO₂ Columns

S	Slant Column
V	Vertical Column
AMF	Air Mass Factor
u	UV
V	VIS
S	stratosphere
t	troposphere

Slant Column Equations for UV and VIS

$$S_u = V_s \operatorname{AMF}_u^s + V_t \operatorname{AMF}_u^t$$

 $S_v = V_s \operatorname{AMF}_v^s + V_t \operatorname{AMF}_v^t$

$$V_{t} = \frac{S_{v} \operatorname{AMF}_{u}^{s} - S_{u} \operatorname{AMF}_{v}^{s}}{\operatorname{AMF}_{u}^{s} \operatorname{AMF}_{v}^{t} - \operatorname{AMF}_{v}^{s} \operatorname{AMF}_{u}^{t}} = \frac{S_{v} - S_{u}}{\operatorname{AMF}_{v}^{t} - \operatorname{AMF}_{u}^{t}}$$
$$V_{s} = \frac{S_{v} \operatorname{AMF}_{u}^{t} - S_{u} \operatorname{AMF}_{v}^{t}}{\operatorname{AMF}_{v}^{s} \operatorname{AMF}_{u}^{t} - \operatorname{AMF}_{v}^{s} \operatorname{AMF}_{v}^{t}}$$

TEMPO-GEMS Joint Science Team Workshop

August 26-30, 2024

TEMPO-GEMS Joint Science Team Workshop August 2

August 26 – 30, 2024

TEMPO-GEMS Joint Science Team Workshop August 2

August 26 – 30, 2024

TEMPO-GEMS Joint Science Team Workshop August 26 – 30, 2024

24 Hawaii

11

TEMPO-GEMS Joint Science Team Workshop August 26 – 30, 2024

)24 Hawaii

Comparisons with TEMPO Standard NO₂ Product Geogra

Screenshot of https://svs.gsfc.nasa.gov/5303/

TEMPO-GEMS Joint Science Team Workshop August 26 – 30, 2024

Hawaii

20240328

600S

Summary

- We describe the theoretical basis of the STS scheme based on joint UV and Vis retrievals. We construct the STS equation and provide the solution based on the DOAS approach.
- This new STS scheme is successfully demonstrated with TEMPO observations, showing stratospheric NO₂ can be estimated without relying on the traditional STS scheme based on CTMs simulation or interpolation from clean regions.
- This is quite robust scheme, insensitive to calibration biases. However, it requires well characterized UV and Vis measurements to achieve consistent quantification NO₂ slant columns in UV and Vis.
- The likely deficiency is the relative NO₂ biases between UV and Vis, due to different spectral bands are affected by spectral interferences differently.
- The tropospheric NO₂ enhancements agree well with the standard TEMPO product.