

Estimation of city-scale NO*^x* emission flux using the GEMS dataset

Speaker : Ja-Ho Koo¹

So-Jeong Lee¹, Jong Cheon Chae¹, Hyeji Cha¹, Jeong-Ah Yu² ¹Yonsei University, ²NIER

1) The need for estimating NO*^x* **emissions in a sudden event (e.g., COVID-19)**

Anthropogenic emissions of NO_x are primarily generated from combustion activities by power plants and vehicles. Once a sudden event occurs, it is essential to quickly identify and provide information on changes in emission levels in major NO_x-emitting cities with dense populations.

2) Slow development of bottom-up inventories

Estimating emissions by assessing the total fuel consumption from each NO_x-emitting source is time-consuming. If information on fuel consumption is not available, emission data cannot be obtained. Emissions from unknown anthropogenic sources cannot be identified.

3) The existence of geostationary satellite measurement

Due to the insufficient data from polar-orbiting satellites, it is challenging to estimate annual/seasonal emissions. But GEMS observes the East Asian region (5000×5000 km²) ~6 to 10 times a day. Therefore, when estimating NO*^x* emissions in the East Asian region, the usage of GEMS data is more beneficial as it reduces the uncertainty due to sampling.

Previous study: Estimation of NO*^x* **emission using LEO satellites**

Several previous studies (e.g., Beirle et al., 2011; Liu et al., 2016) succeeded to estimate city-scale NO*^x* emissions using OMI or TROPOMI satellite data, by analyzing the differences in NO₂ distribution between calm and windy condition.

- (a) Emission estimates for 53 cities in China and the United States using OMI data in the ozone season during 2005-2013. (Liu et al., ACP, 2016)
- (b) Emission estimates for 100 cities worldwide using TROPOMI data during 2018-2020. (Lange et al., ACP, 2022)
- (c) Emission estimates for 100 cities worldwide using TROPOMI data during 2018-2021. (Beirle et al., EGUsphere, 2024)

Data description

Collocation : To classify satellite data based on wind direction and wind speed

- Spatial collocation : GEMS data was regridded to a resolution of 0.05°×0.05°, resulting in 25 GEMS data grid cells being included within a single grid cell of the ERA5 data. 25 GEMS data grid cells are averaged for the same day under specific wind direction and wind speed conditions.
- Temporal collocation : we matched the time of GEMS observation with that of ERA5. (e.g. GEMS 03:50 UTC ⇔ ERA5 04 UTC)

EDGAR (v6.1 versus v8.1)

Target area

- 21 cities are selected which have high $NO₂$ and located in GEMS scan area
- South Korea and Japan : Cities with high NO_2 concentrations are selected.
- China : Cities are selected as study area in previous studies. (Liu et al., 2016; Xue et al., 2022)
- Thailand and Vietnam : The capitals of each country are selected because of significant NO*^x* emissions and minimal elevation difference.

1) Mean tropospheric NO² VCD (vertical column density) distribution

All NO₂ data within the analysis period are categorized by wind direction and wind speed for each grid, and then averaged (Cloud screening: cloud fraction < 30%).

2) NO² line density

- A curve calculated by integrating the mean $NO₂$ distribution along a direction (b) perpendicular to a specific wind direction (a).
- NO₂ line density is obtained under each wind direction and wind speed condition.
- A peak appears at the location where the emission source is located.

Beirle et al. (2011)

3) Effective NO*^x* **lifetime**

• NO₂ line density calculated under calm wind conditions and windy conditions is used.

 $e(x)$

- A nonlinear least squares fit is performed by substituting the NO₂ line density under calm wind conditions for C(x) and parameters (a, b, x_0) in the model function N(x).
- When the fitted N(x) takes the shape of the line density under windy conditions, a, b, and x_0 are fitted and provide information about the $NO₂$ distribution that changed by the wind.
- Specifically, x_0 represents the distance the plume has been transported (e-folding distance), and by substituting it into eq. (3), the effective lifetime (τ) can be calculated.

Ν = × ⨂ + − 0 for ≥ , 0 ℎ -------------------- (1) --- (2)

$$
\tau = \frac{x_0}{w}, \qquad w = \; w_{windy} - w_{calm} \qquad \qquad \text{-----(3)}
$$

a : scaling factor b : offset x_0 : e-folding distance w : mean wind speed

⇒ Transport, chemical decay, and spatial smoothing are not considered separately. So τ is not exactly same with **lifetime in the real atmosphere.**

⁸ **Methodology**

4) NO*^x* **total mass**

- To minimize interference caused by the advection, only the NO₂ line density under calm wind conditions is used.
- The NO₂ line density is calculated for a 40×100 km² area in 21 cities, and line densities under 8 wind directions are fitted by the EMG (Exponentially Modified Gaussian) function from eq. (4).
- Fitted A means NO₂ total mass excepting background NO₂ ($\varepsilon_{i}+\beta_{i}x$). (detailed in next page)
- Scaling NO₂ to NO_x : To calculate NO_x total mass, fitted A is multiplied by $[NO_x]/[NO_2]$ ratio (=1.32).
- \bullet NO_{*x*} emission rate (NO_{*x*} amount per unit time) = NO_{*x*} total mass / lifetime (τ)

$$
g_i(x) = A \times \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{(x-X)^2}{2{\sigma_i}^2}\right) + \varepsilon_i + \beta_i x \qquad \qquad (4)
$$

Blue line : NO₂ line density in the calm wind condition # Red line : background NO₂ ($\varepsilon_i + \beta_i x$) - Result of linear regression using NO₂ line density calculated up to the 5th percentile # Gray line : fitted $g_i(x)$

Green area : fitted A = NO₂ total mass

Results : Mean NO² distribution

- (a) : The result under calm wind condition for N, S, E, W wind.
- (b) : The result under windy condition for N, S, E, W wind.
- (c) : (b)-(a). According to (c), the movement of the NO₂ plume in the troposphere can be observed following the wind direction (black arrows).
- (a) and (b) are used to calculate line densities.

${\sf Results: effective~NO}_{x}$ lifetime 10

Fitting result under N, S, E, W wind in Seoul, 2022

Estimated effective e-folding lifetime (Maximum, mean, and median among total 8 windy cases)

¹¹ **Results : NO***^x* **emission rate (compared with EDGAR)**

- Positive correlation is found between the EDGAR and our GEMS-based estimation.
- GEMS-based NOx emission shows the overestimation. This will be redeemed better when new GEMS $NO₂$ product is applied.

Reducing the GEMS (and TEMPO) NO² vs. Enhancing the TROPOMI NO²

- **I am not able to say which one is better, which one is not. (Qualitatively all products are good to use for the air quality diagnosis. But quantitatively?)**
- **In the context of methodology used in this study,**
	- **GEMS NO² VCD - based estimated NO² emission is larger than EDGAR NO² emission (my work)**
	- **TROPOMI NO² VCD - based estimated NO² emission is comparable to EDGAR NO² emission (e.g., Liu et al., 2016)**
- **And new version (improvement assumed) of EDGAR (ver 8.1) shows lower emission than old version (ver 6.1) (At least in the range of this study. Need to see more).**

Thanks for your attention