

Evaluating GEOS-CF with TEMPO data

Viral Shah (NASA GMAO & SSAI) Emma Knowland, Christoph Keller, Pam Wales, Kris Wargan, Brad Weir & Steven Pawson

GEOS-CF is widely used for research and NASA mission support

GEOS-CF is NASA GMAO's composition forecasting system, combining GEOS-Chem with the GEOS model

Keller et al., 2021, JAMES; Knowland et al., 2022, JAMES

- Daily near real time estimates and 5-day forecasts since 2019
- Global coverage at ~25 km resolution
- Number of applications, including:
 - NASA mission support (TEMPO, TolNet, field campaigns)
 - Atmospheric chemistry research
 - Air quality management

GEOS-CF

CF-2 coming soon!

Tropospheric NO₂ columns

Results for 2018-19

Surface NO₂

North America

GEOS-CF trop NO₂ spatially correlated with TEMPO NO2

Tropospheric NO₂ columns

GEOS-CF-1

TEMPO (V03)

Dec '23

- High correlation between GEOS-CF and TEMPO
- GEOS-CF 40% higher because of older emissions
- TEMPO shows high NO2 over the Permian Basin, not seen in the model

TEMPO data gridded to GEOS-CF grid with recommended quality filters

GEOS-CF NO₂ diurnal profiles stronger than in the TEMPO data

Tropospheric NO₂ columns June '24

Diurnal variation in the model driven by oxidation (mid-day peak) and emissions (morning & evening peaks) GEOS-CF shows larger diurnal variation than the TEMPO data

GEOS-CF stratospheric NO₂ matches the TEMPO data

Stratospheric NO₂ columns December TEMPO **GEOS-CF-1** TEMPO

Diurnal variation for 2° longitude slices

Diurnal and seasonal variation driven by chemistry

Surface NO₂ much lower in GEOS-CF-2

GEOS-CF-2 includes major updates

4 4.5%

Updated Constituent data physics and assimilation chemistry (qdd) ZON 10 Updated emissions

But NO₂ columns in CF-2 closer to the TEMPO data

Tropospheric NO₂ columns Aug '23 GEOS-CF-2

Preliminary; TEMPO averaging kernel not applied

- > GEOS-CF-2 is consistent TEMPO data over cities, improvement over GEOS-CF-1
 - > Background NO₂ too high in CF-2

TEMPO

Conclusions

- GEOS-CF-1 tropospheric NO₂ is spatially similar to the TEMPO data; stratospheric NO₂ columns match each other well
- High bias in tropospheric NO₂ in GEOS-CF-1, but GEOS-CF-2 is better
- Need to better understand

AT & A ANT BY

- the diurnal variation of NO₂ over cities,
- the inconsistency between column and surface comparisons, and
- and the higher background NO₂ in the new model

ace comparisons, and nodel