Towards the "Ideal Spectrograph" for Atmospheric Observation Satellites

Ulrich Platt

Heidelberg University, Institute of Environmental Physics, Heidelberg & Max Planck Institute for Chemistry, Mainz

New Developments in DOAS-Type Satellite Instruments: See ...

Towards the "Ideal Spectrograph" for Atmospheric Observation Satellites

Ulrich Platt

Heidelberg University, Institute of Environmental Physics, Heidelberg & Max Planck Institute for Chemistry, Mainz

New Developments in DOAS-Type Satellite Instruments: See ...

Differential Optical Absorption Spectroscopy

Principles and Applications, Springer 2008
2008. XV, 597 p. 272 illus., 29 in color.
(Physics of Earth and Space Environments)
ISBN 978-3-540-21193-8

2nd Edition: Differential Optical Absorption
Spectroscopy - Principles and Applications.
U. Platt & J.Stutz, Springer,
ISBN: 978-3-662-68637-9 October, 2024

The Differential Absorption Spectroscopy Problem

The central problem: The Shot noise limit!

Shot noise: $N_{SN} = \sqrt{N} \Rightarrow S / N = \frac{N}{\sqrt{N}} = \sqrt{N}, N = No. of Photons$ $Solution: <math>\rightarrow$ More light throughput!

 \rightarrow how to get more light?

Imaging Grating Spectrograph (plus Telescope)

Total size of the spectrograph L = $a \cdot f$, with $a \approx 1.3$

F-Number (F/#): Étendue E:

$$F = \frac{f}{2r}$$

$$\Omega \approx \frac{\pi r^2}{f^2} = \frac{\pi}{4F^2}$$

Resolving power: $\frac{\lambda}{\Delta\lambda} \approx \frac{f}{w_s}$ (assuming 1st order and $d_G \cdot \cos \alpha \approx \lambda$) λ = wavelength, α = angle of incidence on grating

The Relevant Points

How to improve Spectrograph light throughput?

1) Optimize spectrograph

Better grating efficiency (typ. 20 - 80%) Higher detector quantum efficiency (typ. 20 - 80%) Higher mirror reflectivity (typ. $\approx 80\%$) Fewer optical elements (e.g. Czerny-Turner spectrograph has >3 surfaces)

- Increase Étendue E "Better" (lower) F-number, F/#
- 3) Increase slit area (h_S , w_S)

4) Increase size of spectrograph, Upscaling e.g. larger aperture at same F-Number

5) Other Approaches ...

Limited increase in light throughput

Unlimited increase in light throughput possible

2) Scaling the Spectrograph (Plus Telescope) F-Number

3) Larger Slit-Area?

Étendue E: $E = \Omega \cdot A_s$ with: $A_s = w_s \cdot h_s$

a) Increase w_s?

Problem: w_s determines Spectral Resolution (SR)

Solution: SR preserved if w_S and $g=1/d_G$ vary by same factor! **However:** Reduction of d_G limited by wavelength (minimum $d_G \approx \lambda$) Possible improvement: '**Immersed Grating**'

Wavelength λ_n seen by the grating is: $\lambda_n = \lambda/n$ (=index of refraction)

See e.g. van Amerongen, A.H., Visser, H., Vink, R.J.P., Coppens, T., Hoogeveen, R.W.M.: Development of immersed diffraction grating for the TROPOMI-SWIR Spectrometer, Proc. SPIE, 7826, 78261D-1, doi: 10.1117/12.869018, 2010.

b) Increase h_s ? **Problem:** larger h_s increases astigmatism \rightarrow degraded imaging Fastie limit: (Fastie 1952): $h_s \approx w_s \cdot F^2 \underset{F=4}{\approx} 16 \cdot w_s$ Solutions: large f/#, special optics, Offner design ...

Since volume and mass of the spectrograph scale with L^3 , we have only 50% of photons/s per kg.

5a) Parallel Spectrographs (F = const.) How to Quadruple the Étendue (F = const.)

We have 4-times the number of photons/s at 4-times the weight, 100% of photons per kg

And we can still do better ...

5b) Parallel Spectrographs (F = const.) How to Quadruple the Étendue (F = const.)

We have 4-times the number of photons/s at only twice the weight \rightarrow 200% of photons per kg

Scaling Spectrograph Array at Constant Light Throughput

Since E \propto L² it is a good idea to scale down spectrometer size to $L < L_0$ and to compensate loss in E by increasing the number N of individual spectrometers. Required number of spectrographs N: $N = \left(\frac{L_0}{L}\right)^2$ N of individual spectrometers.

Total mass of an array of spectrographs scaled to $L < L_0$:

$$\mathbf{M} \cdot \mathbf{N} = \mathbf{M}_0 \left(\frac{\mathbf{L}}{\mathbf{L}_0}\right)^3 \cdot \left(\frac{\mathbf{L}_0}{\mathbf{L}}\right)^2 = \mathbf{M}_0 \left(\frac{\mathbf{L}}{\mathbf{L}_0}\right) \propto \mathbf{L}$$

 \rightarrow Mass (and volume) shrink with scaling, if e.g. a single spectrograph with characteristic dimension L_0 is replaced by an array of N smaller spectrographs, each one scaled down in its linear dimensions to $L_0/(N^{1/2})$.

Example: Replace spectrograph with size= L_0 (Étendue E= E_0 , mass M= M_0) by 100 spectrographs with size $L_1 = L_0/10$, each one will have $E_1 = E_0/100$ and mass $M_1 = M_0 / 1000 \rightarrow \text{Total mass: } M_1 = M_0 / 10$

How to Improve Spectrometer Light Throughput - Summary

Scaled Property	Mass (M) – Étendue (E) Relationship	Aspect Ratio Preserved	Comment	
1 Optimize Spectrograph	E independent of M	Yes	Only limited improvement possible	
2a Mirror size (area), F-number	$M \propto L^2 \propto E$ or $E \propto M$	No	Very limited scaling, conflict with 3	
2b Focal length F-number	$M \propto \frac{1}{E}$ or $E \propto \frac{1}{M}$	No	Very limited scaling, conflict with 3	
3 Slit area	E independent of M	Yes	Very limited scaling, conflict with 2	
4 Spectrograph size	$M \propto E^{\frac{3}{2}}$ or $E \propto M^{\frac{2}{3}}$	Yes	No limit to scaling	
5 Number of spectrographs, N _{Sp}	$M \propto N_{Sp}$ and $M \propto E$	Yes	No limit to scaling	

How far can we shrink a Spectrograph?

Limits to the shrinking of spectrographs:

- 1) Light diffraction at the shrinking entrance slit. \rightarrow Slit widh has to be >1.22·F· λ , i.e. typically several μ m
- 2) The grating will loose its resolving power $P_G = \lambda/\Delta\lambda$ P_G is given by its total number N_G of grooves: $P_G = \frac{\lambda}{\Delta\lambda} = N_G = \frac{g}{W_G}$

(grating constant g (in grooves/mm) and width w_G (in mm)) Typical g \approx 1800 grooves/mm \rightarrow total number of 36000 grooves and a P_G = 36000. In practice the spectral resolution is about 0.5 nm at 300 nm corresponding to a resolving power P_{pract} \approx 600.

 Very small detector pixels are required Typical detector pixel pitch: 12-25 µm, however smart phone camera detectors have <1 µm pixel pitch

Summary: Typical satellite spectrographs could be scaled down by $L/L_0 \approx 0.01$ Even miniture spectrographs (like Ocean Insight USB-2000) could be scaled down by $L/L_0 \approx 0.1$

Array of Scaled-Down Parallel Spectrographs

- Mass produced
- Automatic alignment
- Individual electronics
- Spectra of all spectrographs can be co-added
- ... or used to improve spatial and temporal resolution

 → For a typical DOAS application mass and volume can be scaled down by a factor 10...100 while maintaining light throughput (E) and spectral resolution

An "Ideal" Satellite Spectrograph

- 1) Shrink existing (GOME, OMI, TROPOMI, GEMS, TEMPO...) UV-Vis spectrograph (mass = M_0 , etendue E_0) by L/L₀ = 0.1 \rightarrow need 100 spectrographs with total weight M/M₀ = 0.1
- 2) Replace existing spectrograph by ≈1000 micro spectrographs (of simple design) → M=M₀ but E=10·E₀
- 3) Scanning is achieved by pointing spectrographs + telescope in desired direction
- 4) Can shrink ground pixel area to 1/10,
 e.g. from 5.5 x 3.5 km² to 2 x 1 km² with same S/N-ratio

TROPOMI Imaging

Fig. 1. TROPOMI measurement principle. The dark-gray ground pixel is imaged on the two-dimensional detector as a spectrum. All ground pixels in the 2600 km wide swath are measured simultaneously.

From: Veefkind et al. 2012

Veefkind J.P., Aben I., McMullan K., Förster H., de Vries J., Otter G., Claas J., Eskes H.J., de Haan J.F., Kleipool Q., van Weele M., Hasekamp O., Hoogeveen R., Landgraf J., Snel R., Tol P., Ingmann P., Voors R., Kruizinga B., Vink R., Visser H., and Levelt P.F. (2012), TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment 120, 70–83.

Satellite Spectrometer Optical Design

GEMS, From:

Won Jun Choi, Kyung-Jung Moon, Jongmin Yoon, Ara Cho, Sang-kyun Kim, Seounghoon Lee, Dai ho Ko, Jhoon Kim, Myung Hwan Ahn, Deok-Rae Kim, Sang-Min Kim, Ji-Young Kim, Dennis Nicks, Jeong-Su Kim, "Introducing the geostationary environment monitoring spectrometer," J. Appl. Remote Sens. 12(4), 044005 (2019), doi: 10.1117/1.JRS.12.044005.

Incredibly sophisticated!

OMI, From:

Dobber M.R., Dirksen R.J., Levelt P.F., van den Oord G.H.J., Voors R.H.M., Kleipool Q., Jaross G., Kowalewski M., Hilsenrath E., Leppelmeier G.W., de Vries J., Dierssen W., and Rozemeijer N.C. (2006), Ozone Monitoring Instrument Calibration, IEEE Trans. Geosci. Remote Sensing 44 (5), 1209.

An "Ideal" LEO Satellite Spectrometer (2)

Geostationary Satellite Instruments (1)

However the telescope is heavy (due to great height) \rightarrow Solution ...

Geostationary Satellite Instruments (2)

Use array of m scaleddown telescopes, each one supplying n/m spectrographs

→ Same scaling rules as for spectrographs apply to telescopes

 \rightarrow Shorter scan period

What About Completely Different Solutions?

- 1) New Technology: "Detector only" Spectrograph
- 2) Old Technology: Fabry-Pérot Spectrograph
- 3) ...

An Ultracompact Spectrograph

waveguide-based photodetector (WGPD)

- Entirely new type of spectrograph
- Large F/#
- Waveguide (can couple to fiber)
- No dispersive elements
- All photons used (in principle)
- Works in the near UV (or visible)
- Sub-nm (10 meV) spectral resolution expected

Grundmann M. (2019), Monolithic Waveguide-Based Linear Photodetector Array for Use as Ultracompact Spectrometer, IEEE Transactions on Electron Devices 66 (1).

From: Grundmann 2019

2) Fabry-Pérot Spectrograph

Free spectral range:
$$\Delta \lambda \approx \frac{\lambda^2}{2 \cdot \text{nd } \cos(\alpha)}$$

Finesse: $F = \frac{\Delta \lambda}{\delta \lambda} \approx \frac{\pi \sqrt{R}}{1 - R}$

Pérot, A. and Fabry, C.: Astrophys. J. 9, 87-115, 1899.

Kuhn J., Bobrowski N., Wagner T., and Platt U. (2021), Mobile and high spectral resolution Faby-Perot interferometer spectrograph for atmospheric remote sensing, Atmos. Meas. Tech. 14, 7873–7892, doi: https://doi.org/10.5194/amt-14-7873-2021

 \dots high finesse \rightarrow high resolution

Which Type of Spectrometer is the Best?

Formulas have been established which express the flux given by a spectrometer as a function of the effective resolving power and of the dimension of the dispersive system (area of the base of the prism, or area of the grating, or area of the plates of the etalon). It is thus possible to compare the luminosities of the three types of instruments with, in each case, equal resolving power and equal dimension. This comparison reveals a great superiority of the grating over the prism for all regions of wavelengths, and a great superiority of the etalon over the grating.

Jacquinot (1954)

In other words:

P(Etalon) >> P(Grating) >> P(Prism)

Jacquinot, P. (1954), The Luminosity of Spectrometers with Prisms, Gratings, or Fabry-Perot Etalons, J. Opt. Soc. Am., 44, 761–765, https://doi.org/10.1364/josa.44.000761.

Summary

- Arrays of massively parallel spectrographs can solve the problem of achieving high light throughput with compact and lightweight instruments
- Existing designs could be made more compact by applying this approach
- Problem of mass-producing micro-spectrometers has to be solved
- LEO: Much simpler telescope design, since only a small telescope field of view is required.
- Adaptive field of view for the edges of the swath (need ≈2600 km swath for a daily coverage by a LEO instrument) in order to reduce the variation in ground pixel size across the swath.
- GEO: Multiple spectrometers + Multiple telescopes could
 - considerably reduce instrument mass
 - allow smaller ground pixels
 - allow faster scan

For details see:

Platt U., Wagner T., Kuhn J., and Leisner T. (2021), The "Ideal" Spectrograph for Atmospheric Observations, Atmos. Meas. Tech. 14, 6867–6883, https://doi.org/10.5194/amt-14-6867-2021

Thank You!

Typical design of a Czerny Turner Spectrograph plus Telescope

The size of the spectrograph L is largely dominated by the focal length f with $L = a \cdot f$, $a \approx 1.3$

2b) Scaling the Spectrograph (Plus Telescope) F-Number

3a) Larger Slit-Area by Increasing Slit Width w_s?

Étendue E: $E = \Omega \cdot A_s$ with: $A_s = w_s \cdot h_s$

Increase w_s ?

Problem: w_s determines Spectral Resolution (SR)

Solution: SR preserved if w_s and $g=1/d_g$ vary by same factor! **However:** Reduction of d_G limited by wavelength (minimum d_G $\approx \lambda$)

Possible improvement: 'Immersed Grating'

Wavelength λ_n seen by the grating is: $\lambda_n = \lambda/n$

```
\rightarrow d<sub>G</sub> can be reduced (and g be increased) by factor n
```

Diamond: $n \approx 2.4$?

 \rightarrow Limited gain!

See e.g. van Amerongen, A.H., Visser, H., Vink, R.J.P., Coppens, T., Hoogeveen, R.W.M.: Development of immersed diffraction grating for the TROPOMI-SWIR Spectrometer, Proc. SPIE, 7826, 78261D-1, doi: 10.1117/12.869018, 2010.

3b) Larger Slit-Area by Increasing Slit Height h_s?

Étendue E:

 $E = \Omega \cdot A_s$ with: $A_s = w_s \cdot h_s$

Increase $h_s? \rightarrow$ Problem: larger h_s increases astigmatism

Quantification by Fastie (1952): empirical relationship between astigmatism as defined as the difference Δf between the sagittal focal length f_s and the meridional focal length f_m (see also Kuhn et al. 2021): $\Delta f \approx 0.1 \cdot \frac{f}{r^2}$

Width of astigmatic spread: $\Delta L = \Delta f/F$. Causing additional width of the image Δw (in dispersion direction): $\Delta w = \Delta L \cdot h_s/f$. With the grating clear aperture 2r we obtain:

$$\Delta \mathbf{w} \approx \Delta \mathbf{L} \cdot \frac{\mathbf{h}_{\mathrm{S}}}{2r} = \frac{\Delta \mathbf{f}}{F} \cdot \frac{\mathbf{h}_{\mathrm{S}}}{2r} = 0.1 \cdot \frac{\mathbf{f}}{F^{3}} \frac{\mathbf{h}_{\mathrm{S}}}{2r} = 0.1 \cdot \frac{\mathbf{h}_{\mathrm{S}}}{F^{2}}$$

Allowing an additional width $\Delta w = w_s/10$ (and corresponding slight degradation in spectral resolution) we obtain:

$$\frac{\mathbf{w}_{\mathrm{S}}}{10} \approx 0.1 \cdot \frac{\mathbf{h}_{\mathrm{S}}}{\mathrm{F}^2} \text{ or } \mathbf{h}_{\mathrm{S}} \approx \mathbf{w}_{\mathrm{S}} \cdot \mathrm{F}^2$$

Fastie, W.G.: Image Forming Properties of the Ebert Monochromator, J. Opt. Soc. Am., 42, 647-651, 1952.

→ Slit height h_s is limited, e.g. a typical F = 4 spectrograph with $w_s = 50 \mu m$ would allow $h_s \approx F^2 \cdot w_s = 16 \cdot w_s \approx 0.8 mm$ (for 10% resolution degradation)

Solution 4 to the Light-Throughput Problem

Scale up size, keeping F-number - and thus Ω - constant:

Problem: $M \propto V \propto L^3 \propto E^{\frac{3}{2}} \Leftrightarrow M \propto E^{\frac{3}{2}}$

Example: Scaling up to $L_1 = 10 \cdot L_0$

Gives 100-fold light throughput but requires 1000-times higher mass

4) Upscaling Spectrograph Size (F = const.)

Assume a spectrograph entrance slit with width w and height h, area $A_s = h_s \cdot w_s$ and aperture solid angle Ω . \rightarrow Étendue E of the instrument given by:

$$E = \Omega \cdot A_s$$
 Ω = const. when spectrograph is scaled

Photons/($s \cdot kg$)

Change of light throughput (i.e. E) when spectrograph size is changed:

$$\mathbf{E} = \mathbf{\Omega} \cdot \mathbf{A}_{\mathbf{S}} \left(\frac{\mathbf{L}}{\mathbf{L}_0} \right)^2 = \mathbf{E}_0 \left(\frac{\mathbf{L}}{\mathbf{L}_0} \right)^2 \propto \mathbf{L}^2 \Leftrightarrow \mathbf{L} \propto \mathbf{E}^{\frac{1}{2}}$$

However, volume and mass of the spectrograph scale with L³, i.e.:

$$M \propto V = M_0 \left(\frac{L}{L_0}\right)^3 \propto L^3$$

Summary: $E \propto L^2$, $V \propto M \propto L^3$:

$$M \propto V \propto L^3 \propto E^{\frac{3}{2}}$$
 or $\frac{E}{M} \propto \frac{1}{L}$

Micro Spectrometer & Scaling

- Avrutsky I., Chaganti K., Salakhutdinov I., and Auner G. (2006), Concept of a miniature optical spectrometer using integrated optical and micro-optical components, Appl. Opt. 45 (30), 7811-7817.
- Danz N., Höfer B., Förster E., Flügel-Paul T., Harzendorf T., Dannberg P., Leitel R., Kleinle S. and Brunner R. (2019), Miniature integrated microspectrometer array for snap shot multispectral sensing, Optics Express 27 (4), https://doi.org/10.1364/OE.27.005719.
- Park Y. and Choi S.H.(2013), Miniaturization of optical spectroscopes into Fresnel microspectrometers, J. of Nanophotonics 7, DOI: 10.1117/1.JNP.7.077599

Solution 5 to the Light-Throughput Problem

Array of N identical Spectrometers (with same F-numbers, F₁):

Example: 10-fold light throughput requires 10-times higher mass

However, it is even better ...

Example: Shrink a Miniature Spectrograph?

Example: Ocean Insight USB2000 instrument with f=70 mm, slit with $w_s = 0.05$ mm by $h_s = 0.5$ mm. Aperture is F/4 corresponding to $\Omega \approx 0.252/4 \cdot \pi \approx 0.0491$ sr.

→ Etendue \approx 0.00123 mm²sr.

The grating typically has 1800 grooves/mm resulting in a total number of 36000 grooves and a theoretical resolving power $P_{G,theo}$ = 36000 >> $P_{G,prakt} \approx 600$.

Detector pixels: $\approx 12 \ \mu m \ (ILX511)$ \rightarrow use commercial camera detectors with $\approx 1 \ \mu m$ pixels (see e.g. Wilkes et al. 2018)

Summary: Even such rather small spectrographs probably could be scaled down by $L_1/L_0 \approx 0.1$

Summary: Shrink & Multiply

$$M \propto L^{3} \propto E^{\overline{2}} \text{ or } \frac{E}{M} \propto \frac{1}{L}$$
$$L_{1} = 0.1 \cdot L_{0}$$
$$E_{1} = 10^{-2} E_{0}, M_{1} \rightarrow 10^{-3} M_{0},$$
$$E_{1}/M_{1} = 10 \cdot E_{0}/M_{0}$$

3

 $\mathbf{\Gamma}$

1

Step 2: multiply spectrograph $N = 100 \Rightarrow final E_2$:

Is it true that the spectrometer mass scales with L³?

For simplicity, we assume the spectrometer to behave like a bar with length L, width w, and height h on which an external force acts.

→ Apply the famous case of bending a bar, (see most physics textbooks, e.g. Meschede 2015). When scaling the initial length L_0 of the bar to some other length L by a factor L/L_0 and likewise w_0 to $w=w_0 \cdot L/L_0$ and h_0 to $h=h_0 \cdot L/L_0$ we can calculate the scaling of Δh since:

$$\Delta h \propto L^3$$
, $\Delta h \propto h^{-2}$, $\Delta h \propto w^{-1}$
 $\Delta h \propto \frac{L^3}{L^2 \cdot L} = \text{const.}$

And:

Satellite Imaging

OMI/TROPOMI – type instrument for 1 km ground pixel size:

$$f = h \cdot \frac{W_S}{W_{GP}} = \frac{h}{W_{GP}} \cdot W_S \approx \frac{8 \cdot 10^5}{10^3} \cdot 0.1 \text{mm} \approx 80 \text{mm}$$

For F=4 a telescope diameter of D=20 mm would be required. Actually TROPOMI has F=9 ...10

Miniature spectrometer instrument for 1 km ground pixel size:

$$f = \frac{h}{w_{GP}} \cdot w_{S} \approx \frac{8 \cdot 10^{5}}{10^{3}} \cdot 0.01 \text{mm} \approx 8 \text{mm}$$

For F=4 a telescope dia. of D=2 mm would be required.

→ From a standpoint of imaging there is no problem to build a system with smaller ground pixels

However, measurement time is a problem!

For w_{GP} =1km max. 1/7s would be permissible

Instantaneous Ground Pixel vs. Effective Ground Pixel

Along-track extension of the Instantaneous ground pixel should be small (?) compared to that of the effective ground pixel.

"Ideal" Satellite	Instrument Property	TROPOMI- Type ¹	Scaled 1	Scaled 2	
Spectrometers	Nominal ground pixel dimensions at nadir, km ²	7 x 3.5	7 x 4.3	1 x 1	
See: Platt etal. (2021), AMT 14, 6867–6883,	Instantaneous ground pixel dimensions at nadir, (area), km ²	1.7 x 3.5 (11.9)	1.6 x 4.3 (6.9)	0.5 x 1 (0.5)	
https://doi.org/10.5194/a mt-14-6867-2021	Ground pixel dimensions at edge of swath km ²	7 x 12.7	7 x 4.3	1 x 1	
1) (a official of al	Spectrograph focal length, mm	≈ 200	20	20	
See Veelkind et al.	Spectrograph F-Number	≈ 9.5	4	4	
al. 2006	Entrance slit w x h, mm x mm	NA ²	0.029 x 0.46	0.029 x 0.46	
² not applicable in this	Number of spectrographs + telescopes per instrument	1	200	2600	
context due to	Ground pixels per spectrograph	576	6	8	
intermediate imaging	No. of spectrographs observing the same ground pixel	1	2	8	
³ calculated from	Total number of ground pixels	576	600	2600	
telescope F-number and entrance area as given by Dobber et al. 2006	Total étendue, (mm ² sr)	E ₀ (≈0.103)	≈1.27 E ₀ (0.131)	≈16.5·E ₀ (≈1.7)	
	Étendue per pixel, mm ² sr	0.000179 ³	0.00011	0.0006548	
	Telescope focal length f_T at nadir, (f_T at edge of scan), mm	NA ²	14.3 (52 ⁴)	46.1 mm (167.7 ⁴)	
⁴ For 60% of the pixels (centre 1600 km of swath) the necessary	Telescope diameter, (dia. at the edge of scan), mm	NA ²	3.6 (13)	11.52 (42)	
	Exposure time τ_{exp} , s	1	1	0.14	
	Signal per pixel (signal/noise, SNR) relative to TROPOMI	1 (1)	1.3 (1.1)	0.51 (0.72)	
extension of I_T is < 2.	Approximate total volume, litres	100	ca. 1.4	50-100	
	Approximate total mass	M ₀ (≈100 kg)	M ₀ /100	M ₀	

From the TROPOMI Spectrograph to the "Ideal Spectrograph"

TROPOMI: f≈200mm, F≈10, N_{SP}=1, E_{rel}=1, M_{rel}=1

Ideal Spectrograph 1: f=20mm, F=10, N_{SP} =2600, E_{rel} =26

→ Volume scaling factor $\Gamma_V \approx 1000$

 \rightarrow M_{rel}=2.6

More than enough to compensate for shorter exposure time

→ At only 2.6-times more mass the resolution could be improved from 3.5x7km² to 1x1km² with somewhat better SNR

Further advantages:

- Simpler optics design,
- Option to enhance to F=4
- Nearly uniform ground pixel size

An "Ideal" Satellite Spectrograph

Ground Pixel Size

Fabry Pérot Interferometer Spectrograph - Prototype

From: Kuhn J., Bobrowski N., Wagner T., and Platt U. (2021), Mobile and high spectral resolution Faby-Perot interferometer spectrograph for atmospheric remote sensing, AMT 14, 7873–7892.

Our high Res. Fabry Pérot Interferometer Spectrograph

Fabry Pérot Interferometer Spectrograph - Prototype

Low Res. Fabry Pérot Interferometer Spectrograph

FPI Aperture angle about $20^{\circ} \rightarrow \Omega$ comparable to F=4 $\rightarrow \Omega_{\text{Spectrograph}} \approx \Omega_{\text{Fabry-Pérot}} \approx 0.04 \text{Sr} \cdot \text{mm}^2$

However:

 $A_{Spectrograph} \approx 0.04 mm^2 \qquad A_{Fabry-P\acute{e}rot} \approx 60 mm^2$

 $E_{Fabry\text{-}P\acute{e}rot} \approx 10^4 \cdot \, E_{Spectrograph}$

Possibilities 2a and 2b are really the same ...

- The change of the spectrometer with initial étendue E_0 , initial focal length f_0 and optics diameter D_0 to Γ_1 f_0 with constant optics diameter D_0 , can be thought of as a two step process:
- Scale the entire spectrometer with preserved aspect ratio (according to case 1 in Table 1) by a linear factor Γ₁ (for example Γ₁=1/2)
 → E will be reduced to (Γ₁)² (i.e. to ¼ E₀) while the mass will change from M₀ to M₀ · (Γ₁)³ (i.e. to M₀/8). Note that the slit dimensions are also scaled by Γ₁.
- 2) Then increase D by factor $1/\Gamma_1$ (according to case 2a in Table 1) \rightarrow in this step E and mass will increase by factor $1/(\Gamma_1)^2$
- In total E would be unchanged, mass will be scaled to $M_0 \cdot \Gamma_1$ (i.e. to $4 \cdot M_0/8 = M_0/2$).
- Since we assumed that in case 2b (see Table 1) the slit width is scaled, but not the slit height we have to change the slit height from $\Gamma_1 \cdot h_0$ to ist original value h_0 .
- → The final E will be E_0/Γ_1 , (i.e. E = 2 E_0) thus E \propto 1/M as given in equation α

The "Ideal Spectrograph" for Atmospheric Observations

Ulrich Platt^{1,2}, Thomas Wagner², Jonas Kuhn^{1,2}, and Thomas Leisner³ ¹Heidelberg University, Institute of Environmental Physics, ²Max Planck Institute for Chemistry, Mainz, ³Karlsruhe Institute for Technology (KIT), Karlsruhe

Central problem of spectroscopy (DOAS-type) systems: Shot noise limit!

S/N $\propto \sqrt{S}$ \rightarrow How to collect more light (higher S)?

Bigger Spectrometer is a poor solution, since Size (and Mass) \propto S $^{3/2}$

See Platt et al. 2021, AMTD, https://doi.org/10.5194/ amt-2020-521

The ideal spectrograph system:

Step 1: Shrink spectrograph as much as possible: gain, since Size \propto S^{3/2}

(e.g. 1/10 reduces Size (and mass) to 1/1000, light throughput to 1/100)

 \rightarrow 10-times more signal per mass

Step 2: Use an array of many spectrographs in parallel: Size \propto S

Array of miniature spectrographs: Arrav of 2600 Longer teles-cope spectrometers with 1) Shrink MAX-DOAS to 1/100 of volume focal length f_T at identical dimensions edges of swath to compen-sate for geometry 2) Shrink TROPOMI-Type instrument to 1/100 of mass & volume Telescope f_⊤≈5mm maintaining light ≈800km $w_{s}=6\mu m$ throughput 3) Build 1km² ground Ground Pixel: pixel instrument with the Ground Pixel: 1 km x 1 km 1 km x 1 km same mass as TROPOMI 0 Total Swath ≈ 2600km

Array of miniature spectrographs:

1) Shrink MAX-DOAS to 1/100 of volume

2) Shrink TROPOMI-Type instrument to 1/100 of mass & volume maintaining light throughput

3) Build 1km² ground pixel instrument with the same mass as TROPOMI

The Geostationary Air Quality Constellation (GEMS, TEMPO, Sentinel-4)

From: Kim et al. (2020) New Era of Air Quality Monitoring from Space, BAMS, https://doi.org/10.1175/BAMS-D-18-0013.1

TEMPO TEMPO C KNMI/ASB/ESA/SAO

The Geostationary Environment Monitoring Spectrometer (GEMS)

GEMS was launched in February 2020 onboard the GEO-COMPSAT-2B satellite

The UV-Visible hyper spectrometer measures atmospheric composition and climate forcers including sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃) formaldehyde (HCHO), and aerosols

The Geostationary Environment Monitoring Spectrometer (GEMS)

			Geostationary Environment
Parameter	Value	GEO-KOMSAT-2B (GK-2B) satellite	Monitoring Spectrometer (GEMS)
Spacecraft	GEO-KOMPSAT-2B	Solar cell panel	
Orbit	Geostationary		
Lifetime	> 10 years		
Spectral range	300–500 nm		
Spectral resolution	0.6 nm	Body of the satellite	
Spectral sampling	0.2 nm		Geostationary Ocean Color Imager-II
Temporal resolution	1 h		(GOCI-II)
Spatial resolution	$7 \times 8 \text{ km}^2$ (gases) at Seoul 3.5 × 8 km ² (aerosol) at Sec	bul	
Field of regard	> 5000 × 5000 km ² (N/S × N/S range: 5° S–45° N E/W range: 75–145° E	E/W)	
Requirement of polarization factor	< 2 % (310–500 nm) (No inflection point within 20 nm range)	From GEN	1S Brochure:

Publication Registration No. 11-1480523-004814-14 NIER-GP2022-059

Geostationary (GEO) vs. Low Earth Orbit (LEO)

GK-2B (GEO satellite)

- Monitoring Asia on average 8 times a day
- Monitoring air pollutants and climate change causing pollutants

A GEO satellite is placed at an altitude of approximately 36,000km above earth and revolves in the same length of time as the earth requires to rotate, so it appears nearly stationary in the sky as seen by a ground-based observer. GEO satellites consistently monitor targeted areas in daylight.

From GEMS Brochure: Publication Registration No. 11-1480523-004814-14, NIER-GP2022-059

LEO satellite

- · Monitoring the Korean Peninsula every 1 to 3 days
- Monitoring environment in over 10 countries (the U.S and Europe, etc.)

A LEO satellite is much closer to the earth than GEO-typed one. It takes only 90 to 100 minutes to revolve the earth, which makes LEO-typed satellites suitable to be used for exploring the earth, mobile communication, and meteorological observation.

Monitoring mode	Half East (HE)	Half Korea (HK)	Full Central (FC)	Full West (FW)
FOR				
Monitoring range	Korean Peninsula, Japan, etc.	Korean Peninsula, Japan, East China, etc.	Korean Peninsula, Japan, China, Southeast Asia, etc.	Korean Peninsula, China, Southeast Asia, some parts of India, etc.
Monitoring hours (UTC)	23~1	0~2	1~3	3~8

Monitoring No.	1	2	3	4	5	6	7	8	9	10	Daily
UTC	23:00	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	observation times
KST	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	
Jan			HE	НК	FC	FW	FW	FW			6
Feb			HE	НК	FC	FW	FW	FW	FW		7
Mar		HE	НК	FC	FC	FW	FW	FW	FW		8
Apr	HE	HK	FC	FC	FC	FW	FW	FW	FW	FW	10
May	HE	нк	FC	FC	FW	FW	FW	FW	FW	FW	10
Jun	HE	НК	FC	FC	FW	FW	FW	FW	FW	FW	10
Jul	HE	HK	FC	FC	FW	FW	FW	FW	FW	FW	10
Aug	HE	НК	FC	FC	FW	FW	FW	FW	FW	FW	10
Sep	HE	НК	FC	FC	FW	FW	FW	FW	FW	FW	10
Oct		HE	нк	FC	FC	FW	FW	FW	FW		8
Nov			HE	НК	FC	FW	FW	FW			6
Dec			HE	HK	FC	FW	FW	FW			5

Ex.) In case of 23:00 UTC, the actual monitoring time is UTC 22:45~23:15.

*UTC (Coordinated Universal Time): The standard (KST-9) of the scientific time used in the international community *KST (Korea Standard Time): 9 hours (UTC+9) ahead of the UTC From GEMS Brochure: Publication Registration No. 11-1480523-004814-14, NIER-GP2022-059

= No observation

From: Kim et al. (2020) New Era of Air Quality Monitoring from Space, BAMS, https://doi.org/10.1175/BAMS-D-18-0013.1

GEMS Optomechanical subsystem

Fig. 4 Optomechanical subsystem of the GEMS.

From: Won Jun Choi, Kyung-Jung Moon, Jongmin Yoon, Ara Cho, Sang-kyun Kim, Seounghoon Lee, Dai ho Ko, Jhoon Kim, Myung Hwan Ahn, Deok-Rae Kim, Sang-Min Kim, Ji-Young Kim, Dennis Nicks, Jeong-Su Kim, "Introducing the geostationary environment monitoring spectrometer," J. Appl. Remote Sens. 12(4), 044005 (2019), doi: 10.1117/1.JRS.12.044005. TEMPO: Monitoring North America's Pollution from Space

Dr. Kelly Chance

Scientia

Tropospheric Emissions:

Monitoring of Pollution (TEMPO)

TEMPO instrument characteristics

Wavelength range	290-490 + 540-740 nm
Spectral resolution	0.6 nm FWHM
Spectral sampling	0.2 nm
Maximum S/N	2700 @ 330-340 nm, EOL
Spatial resolution	2.1×4.5 km ² @ 36.5N, 100W
Spectra per hour	2000 N/S × 1250 E/W

Instrumental Payload: SENTINEL-4 Instrument

The MTG-S payload consists of the IRS instrument and of the SENTINEL-4 instrument.

Airbus Defense and Space is the European Space Agency's (ESA) prime contractor for the development and construction of SENTINEL-4, a highly accurate instrument designed to monitor key atmosphere constituent. Airbus Defense and Space lead a team of around 40 subcontractors for the development and construction of SENTINEL-4.

The main characteristics of SENTINEL-4 instrument can be summarised as follows:

Instrument type: passive imaging spectrometer

Number of spectrometric bands: three Ultraviolet (305-400 nm), Visible (400-500 nm) and Near Infrared(750-775 nm) VIS and NIR bands implemented in two spectrometers UVVIS & NIR)

Number of spectrometric channels: 2 (UV-VIS channel; NIR channel)

Configuration: Push broom scanning (scan in the E/W direction).

Field Of View (FOV) E-W: 30°W-46.5°E @ 40°N, N-S: 30°N-65°N

Spatial resolution: 8x8 km2

Spectral resolution: 0.5 nm for the UV-VIS channel; 0.12 nm for the NIR channel

Radiometric accuracy (absolute): 3% (2% goal) of the measured sun irradiance, earth radiance and spectral reflecta

Overall mass: 200 Kg.

Dimensions : 1.1 x 1.4 x 1.6 m3

Design lifetime: 8.5 years

Power Demand: 180 W

Data volume, generated during observation: about 2.0 Terabits per day.

Revisit time: about 60 min.