Tropospheric Emissions: Monitoring of Pollution

TEMPO Level 2

Gonzalo González Abad Kelly Chance Xiong Liu

Smithsonian Astrophysical Observatory

Joint Geostationary Science Team Meeting Center for Astrophysics Cambridge, MA 26- 27 September 2019

Smithsonian

60 minutes

www.nasa.gov

Hourly Measurement of Pollution

Talk outline

Smithsonian

- Level 2 teams
- Baseline and threshold data products
- Retrieval methods:
 - Ozone profile
 - Trace gas (nitrogen dioxide, formadelyde, ...)
 - Clouds
 - Aerosols & total ozone
- Expected performance
- Challenges
- Data product development
- Research products

Operational Product	Personnel
Ozone profile	Xiong Liu, Juseon Bak
Total ozone	Joanna Joiner
Nitrogen dioxide	Caroline Nowlan, Nick Krotkov, Randall Martin, Jeff Geddes, Gonzalo González Abad, Chris Chan Miller
Formaldehyde	Gonzalo González Abad, Caroline Nowlan, Chris Chan Miller
Cloud properties	Joanna Joiner
Aerosols	Omar Torres

Operational implementation and IT support @ Smithsonian Astrophysical Observatory Science Data Processing Center (SDPC) by John Houck and Ewan O'Sullivan

Baseline and threshold level 2 products

Species/Products	Required Precision	Temporal Revisit	
0-2 km O ₃ (Selected Scenes) Baseline only	10 ppbv	2 hour	
Tropospheric O ₃	10 ppbv	1 hour	
Total O ₃	3%	1 hour	
Tropospheric NO ₂	1.0×10^{15} molecules cm ⁻²	1 hour	
Tropospheric H ₂ CO	1.0×10^{16} molecules cm ⁻²	3 hour	
Tropospheric SO ₂	1.0 × 10 ¹⁶ molecules cm ⁻²	3 hour	
Tropospheric C ₂ H ₂ O ₂	4.0 × 10 ¹⁴ molecules cm ⁻²	3 hour	
Aerosol Optical Depth	0.10	1 hour	

□ Aerosols (AOD, SSA, AAI), SO₂, C₂H₂O₂ were removed from baseline products during KDPC

Use reserve to bring them back during gap period

Cloud product (cloud fraction, cloud pressure): used in trace gas retrievals

Baseline and threshold level 2 products

Level	Product	Algorithm	Major Outputs	Spa Res km ²	Freq/Size
L2	Cloud	OMCLDRR	Cloud fraction, cloud pressure	2.1 x 4.5	Hourly, granule
	O ₃ profile	SAO O3 profile	O3 profile, total/strat/trop/0-2 km O3 column, errors, a priori, averaging kernels	8.4 x 4.5	Hourly, granule
	Total O ₃	TOMS V8.5	Total O3, AI, cloud frac	2.1 x 4.5	Hourly, granule
	NO ₂	SAO trace gas Washington/BU strat/trop sep.	SCD, strat./trop. VCD, error, shape factor, scattering weights	2.1 x 4.5	Hourly, granule
	H ₂ CO	SAO trace gas		2.1 x 4.5	Hourly, granule
	SO ₂	SAO trace gas	SCD, VCD, error, shape factor,	2.1 x 4.5	Hourly, granule
	$C_2H_2O_2$	SAO trace gas	scattering weights	2.1 x 4.5	Hourly, granule
	H ₂ O,BrO	SAO trace gas		2.1 x 4.5	Hourly, granule
	Aerosol	OMAERUV	AAI, AOD, SSA	8.4 x 4.5	Hourly, granule
L3	Gridded L2	SAO L2-3	Same as L2	TBD	Daily/Monthly Hourly, scan
L4	AQ Index	Washington, EPA	Air quality index	TBD	Hourly, scan
	UVB	OM UVB	UV irradiance, erythemal irradiance, UV index	TBD	Hourly, scan

Baseline/launch retrieval methods

NO₂, H₂CO, SO₂, C₂H₂O₂ vertical columns

Direct fitting to TEMPO radiances (e.g., heritage from OMI OMHCHO) AMF-corrected reference spectra, Ring effect, etc. NO₂ strat./trop. separation (STS) adapted from OMI

O₃ profiles and tropospheric O₃

SAO OE-based ozone profile method developed for GOME and OMI Add visible to improve retrieval sensitivity in the lower troposphere May be extended to SO_2 , especially volcanic SO_2

TOMS-type total ozone retrieval (OMTO3) included for heritage

Aerosol products based on OMAERUV: AOD, AAOD, Aerosol Index

Advanced/improved products likely developed @ GSFC, U. Iowa, NOAA

Cloud Products from OMCLDRR: CF, CTP

Advanced/improved products likely developed @ GSFC

UVB research product based on TOMS/OMI heritage (FMI, GSFC)

TEMPO Retrieval Sensitivity Studies

- Smithsonian
- Performed RTM simulations of TEMPO radiance spectra and optimal estimation based retrieval sensitivity studies for determining instrument requirements & verifying instrument performance.
 - VLIDORT: adapted from previous GEO-CAPE tools, with interfaces for viewing geometry, built-in cross sections, pre- and after- convolution, HITRAN line by line calculations, aerosol profiles and plumes, scattering clouds, IPA, Koelemeijer GOME surface albedo database or input surface reflectance spectra
 - ➢ Hourly fields of GEOS-Chem model fields over TEMPO field of regard for 12 days (1 day/month) up to SZA 80° → ~90,000 simulations with 10 gases (O₃, NO₂, H₂CO, SO₂, C₂H₂O₂, H₂O), BrO, OCIO, O₂, O₄′ 6 types of aerosols, water/ice clouds
 - TEMPO SNR model: account for optical transmission and grating efficiency, including shot, dark current, RTN, readout, quantization, smear, CTE noise terms
 - Climatological a priori: climatological for O₃, unconstrained for other trace gas VCDs, consistent with current algorithms
 - Optimal estimation to perform retrieval sensitivity and error analysis

Retrieval methods: Ozone profile

- Adapted SAO OE-based algorithm developed for GOME and OMI (Liu et al., 2005, 2010) to retrieve partial ozone columns at ~24 layers as well as total, stratospheric, tropospheric, and 0-2 km ozone columns from normalized radiance in the UV (290-345 nm) and visible (540-650 nm)
 - Climatological a priori: tropopause-based O₃ profile climatology (Bak et al., 2013) or diurnally resolved O₃ climatology based on the GEOS-5 nature run at 12 km x 12 km
 - Include retrieval a priori, retrieval error, retrieval error covariance matrix, retrieval averaging kernels

Retrieval methods: Ozone profile

- Add visible to improve retrieval sensitivity in the lower troposphere
- Combine MODIS albedo/BRDF database at high spatial resolution with existing spectral albedo libraries to improve the characterization of surface albedo spectra
- Time consuming due to on-line radiative transfer calculations: perform retrievals at 8.4 x 4.5 km², data latency within 24 hours

Retrieval methods: trace

- Adapted from SAO two-step OMI trace gas algorithm and NASA NO_2 stratospheric/tropospheric separation (STS) algorithm to retrieve VCDs of trace gases (e.g., NO_2 , H_2CO , H_2O , SO_2 , $C_2H_2O_2$) from normalized radiance in selected spectral windows
 - Direct fitting to TEMPO radiances (e.g., OMHCHO) to derive SCD
 - Air Mass Factor (AMF) from diurnally resolved trace gas climatology based on the GEOS-5 nature run at 12 km x 12 km, surface albedo climatology, TEMPO cloud products, look-up table of scattering weights
 - Product includes SCD, VCD, retrieval errors, profile shape, scattering weights, AMFs. NO2 product includes separate strat./trop. SCDs/VCDs

Retrieval methods: NO₂ Strat./Trop. Separation (STS)

J. Geddes (BU) and R. Martin (Washington Univ.) adapted NASA OMI NO₂ STS algorithm to TEMPO (limited domain) finding overall good performance and small errors of ~2.0E14 molecules at the edge minimized with LEO support

NASA

Smithsonian

Retrieval methods: Clouds

- Adapted from OMCLDRR to retrieve effective cloud fraction and optical centroid pressure (OCP) from TEMPO normalized radiances in ~346-354 nm
 - Rotational Raman Scattering (RRS) cloud algorithm developed for OMI (OMCLDRR) by Joiner et al. at GSFC
 - RRS by air molecules produces filling and depletion effects in radiance spectrum called the Ring effect, cloud/aerosol reduces RRS
 - Mixed Lambertian Equivalent Model (MLER): cloud/surface is assumed to be opaque Lambertian, an effective cloud fraction is used to weigh the clear and cloudy portion of a pixel
 - Effective cloud fraction is derived from a wavelength not sensitive to RRS and atmospheric RRS
 - RRS is fitted from spectral fitting, and used to derive OCP from a lookup table
- The RRS cloud retrievals are sensitive to instrumental (e.g., stray light, dark current), geophysical effects (e.g., 3D, shadow)
 - \blacktriangleright Backup algorithm is being developed based on absorption O₂-O₂ at 477 nm at GSFC 12

Retrieval methods: Aerosols and total ozone

- Will adapt from OMI's OMAERUV developed by O. Torres at GSFC to retrieve <u>Absorbing Aerosol Index (AAI)</u>, <u>Aerosol Optical Depth (AOD)</u>, and <u>Single Scattering Albedo (SSA)</u> from TEMPO normalized radiances at ~354 and 388 nm.
 - Uses the sensitivity of near-UV observations to particle absorption to retrieve aerosol absorption properties in conjunction with the aerosol extinction optical depth
 - Assume three aerosol types (refractive index & size distribution): carbonaceous, desert dust, and urban/industrial particulate
 - Aerosol height climatology from CALIPSO (Cloud-Aerosol Lidar with Orthogonal Polarization) measurements
 - Surface albedo climatology
 - Four pixels might be used for cloud clearing, so the product resolution is at 8.4 x 4.5 km².
- Adapted from OMI TOMS-type V8.5 (OMTO3) to retrieve <u>total ozone</u>, <u>surface reflectivity</u>, <u>AAI</u>, from TEMPO normalized radiances at a few wavelengths (e.g., 317/331 nm, 331/360 nm)

Expected performance

Table 1.

Key TEMPO instrument parameters based on the latest design as of February 2016 for a geostationary satellite at 100°W. The signal to noise ratio is the average value over the specific retrieval windows for the nominal radiance spectrum. IFOV is Instantaneous Field of View at 36.5°N, 100°W. MTF is Modulation Transfer Function at Nyquist.

Parameter		Value	Parameter	Value
Mass Volume		148 kg 1.4 \times 1.1 \times 1.2 m	Spectral range Spectral resolution &	290–490 nm, 540–740 nm 0.57 nm, 0.2 nm
Avg. operational power		163 W	Albedo calibration uncertainty	2.0% λ -independent, 0.8% λ -dependent
Average Signal to Noise [hourly @ 8.4 km x 4.4 km]	O₃:Vis (540– 650 nm)	1436	Spectral uncertainty	< 0.1 nm
	O ₃ : UV (300– 345 nm)	1610	Polarization factor	$\leq 2\%$ UV, $< 10\%$ Vis
	NO ₂ : 423–451 nm	1771	Revisit time	1 h
	H ₂ CO: 327–356 nm	2503	Field of regard: N/ $S \times E/W$	$4.82^\circ imes 8.38^\circ$ (greater North
700gman et al				America)
	SO ₂ : 305–345 nm	1797	Geo-location Uncertainty	2.8 km
2017, JQSRT,	C ₂ H ₂ O ₂ : 420– 480 nm	1679	IFOV: $N/S \times E/W$	$2.1 \text{ km} \times 4.4 \text{ km}$
TEMPO Overview	Aerosol: 354, 388 nm	2313	E/W oversampling	5%
	Clouds: 346– 354 nm	2492	MTF of IFOV: N/S \times E/W	0.19×0.36

* SNR are for 4 pixels coadded as requirements are derived from coadding 4 pixels at 8.4 x 4.5 km²!

Table 3.

Statistics (mean and 1σ) of retrieval precisions and errors for various **Zoogman et al.**, of scenarios products. and the percentage meeting the requirements (MR).

Product ^a	Precision Total errors		Meets reqs. (%)	
UV total O_3 UV trop. O_3 UV 0-2 km O_3 UV/Vis total O_3 UV/Vis trop. O_3 UV/Vis 0-2 km O_3 NO ₂ (× 10 ¹⁵)	$\begin{array}{c} 0.32 \pm 0.08 \\ 3.05 \pm 0.71 \\ 2.59 \pm 0.70 \\ 0.30 \pm 0.07 \\ 3.04 \pm 0.90 \\ 3.29 \pm 0.71 \\ 0.30 \pm 0.08 \end{array}$	$\begin{array}{c} 0.72 \pm 0.08 \\ 6.38 \pm 1.98 \\ 8.86 \pm 1.53 \\ 0.54 \pm 0.13 \\ 5.21 \pm 1.72 \\ 7.93 \pm 1.41 \\ 0.36 \pm 0.20 \end{array}$	100 98.3 78.2 99.4 98.9 92.8 98.4	
${ m H_2CO}~(imes 10^{16})\ { m C_2H_2O_2}~(imes 10^{14})$	$0.38 \pm 0.10 \\ 4.68 \pm 1.56$	$0.42 \pm 0.13 \\ 4.75 \pm 1.62$	100 N/A	
$SO_2 (\times 10^{16})$	1.09 ± 0.49	1.86 ± 1.04	N/A	

^a The units are % for total ozone column, ppbv for tropospheric O_3 and $0-2 \text{ km } O_3$, and molecules cm⁻² for other trace gases.

2017, JQSRT, **TEMPO Overview**

Clear-sky conditions

 \succ O₃: fitting precision, vertical smoothing, interferences

Other trace gases: fitting precision, interference. Uncertainties due to AMFs not considered.

Challenges for TEMPO Ozone Profile Algorithm

- It depends on absolute radiometric calibration and consistent calibration between UV and Visible bands: requires soft calibration
- Due to the weak signal from the visible, it is critical to have good knowledge of surface albedo/BRDF spectra: MODIS albedo/BRDF+EOFS of surface albedo spectra
- For retrieval of lower tropospheric ozone, it might be important to retrieve/correct for aerosol effects (yet to be implemented).
- Retrieval is computation-demanding as it involves on-line radiative transfer calculation: we are combining PCA-RTM with look-up table correction to speed up retrievals.

- The current baseline surface reflectance climatology is for historical reasons the OMLER dataset (Kleipool et al., 2008)
- TEMPO will ideally use surface reflectance at higher spatial resolution (OMLER is 0.5°) considering SZA dependence
- Proposed solution, derive SZA dependent Lambertian reflectance using MODIS BRDF climatology at different wavelengths

Challenges: snow/ice cover and treatment

- Snow/ice information is incorporated into L1b files from the NSIDC
- Snow and ice is considered in AMF calculations assuming a constant albedo (e.g., 0.8)
- > However, we know:
 - Snow and ice affect cloud retrievals
 - Snow albedos vary as function of effective radius, depth, age, contamination...
 - > Snow information is not available to account for these variations

TEMPO's radiative transfer (Ozone profile and trace gas AMFs doesn't consider aerosols) which significantly modify photon paths and observation vertical sensitivities

Smithsonian

Challenges: retrieval over fires

- How to obtain consistent a-priori information about clouds, aerosols, vertical distribution, scene reflectance, ...?
- Would it be possible to exploit synergies between TEMPO, GOES-R and LEO observations?

21

- One of the strategies used to minimize the impact of stripes in retrievals of weakly absorbing species is to use a radiance reference instead of a solar irradiance in the direct fit algorithms.
- Traditionally the radiance reference has been obtained using measurements over a reference sector with small and fairly homogeneous fields of the target species.
- Will that be an option for TEMPO if needed? It is necessary to find alternative definitions of the reference sector

Challenges: strat./trop. separation

The performance of the STS algorithm its affected near the edges of TEMPO's field of regard. To avoid this issue context information from LEO observations is provided. NRT NO₂ product will use a monthly climatology instead of LEO observations.

Data product development

- Version 1 ready (mostly OMI algorithms adapted for TEMPO) has been implemented and being tested using synthetic data.
- Version 2 to be delivered by April 2020 with updates in ancillary (trace gas and surface albedo climatologies, LUT) data and algorithm physics.
- Science team members develops/updates and test algorithm features that are later on integrated in the operation pipeline by the SDPC team (John and Ewan).

Data product development

Spectral fitting trace gas algorithm is being thoroughly tested after been adapted to process OMI, OMPS, and TROPOMI observations (SAO MEaSUREs HCHO, H₂O and CHOCHO project)

- > H_2O , BrO, OCIO, IO, and volcanic (SO₂ plume height and VCD)
- > Additional/improved cloud with $O_2 O_2$ bands or $O_2 B$ bands
- Additional aerosol products from hyperspectral spectra, O₂-B and O₂-O₂ bands, and TEMPO + GOES-R synergy at @U lowa, GSFC, NOAA
- Vegetation products: solar Induced fluorescence (SIF)
- Diurnal out-going shortwave radiation and cloud forcing
- City lights
- Higher-level products: Near-real-time pollution/AQ indices, UVB/UV index
- Data fusion possibilities between TEMPO, GeoCarb, GLIMR, and GOES-R sensors (carbon cycle, ocean, cloud, aerosols, ice/snow, land cover, lightning...)

Extra/back up slides

26

Retrieval methods: regridding algorithm

- L3 product involves re-gridding selected L2 product variables onto a longitude-latitude grid with square pixels.
 - Each L3 pixel value is an area-weighted (and also uncertaintyweighted) mean of overlapping L2 pixel values, filtered to exclude bad data.
 - Each L3 product covers a single full east-west scan.
- Relatively inexpensive calculation geometry & averaging.
 - Geometric projections available from OTS libraries.

Retrieval methods: regridding algorithm

pix = 0.05 deg @ -73.2W, +47.5N

longitude [deg]

Expected performance

- 2035 good N/S pixels
- N/S IFOV: 41.49 µad
- E/W IFOV: 129.2 µad
- E/W step size: 123 μad (changeable, up to 200 μad)
- Allowable E/W range: 1614 steps
- Inner range of 1189 E/W steps: nominal boresight to cover CONUS in 1hr.
- Inner range of 1282 E/W steps: scan mirror @+950 μad S/N to cover Puerto Rico in 1 hr.

- Nominal boresight latitude: ~34.35°N
- According to CONOPS document, scan mirror allowable range: ±4400 μ ad in dy or S/N, ± 49600 μ rad in dx or E/W (x 2 for angle on ground)
- Maximum allowable E/W range for scan mirror between \pm 49600 μ rad E/W
- Northmost/Southmost range for scan mirror at -4400/+4400 μ rad

TEMPO hourly NO₂ sweep (GEO @92.85W)

Boresight: 33.8°N, 93°W 2034 good N/S pixels ~ 1282 scans/hr ~ 2.6 M pixels/hr Data rate: ~31.2 Mbs ~20 times of OMI data volume (comparable to **TROPOMI**)

NA SA

TEMPO hourly scan of NO₂ (GEO @92.85W)

OMI NO_2 in April (2005-2008) over TEMPO FOR

NASA

mithsonian

TEMPO footprint (GEO @92.85° W)

1PO

T

• Boresight at 33.76°N, 92.85°W

Location	N/S (km)	E/W (km)	GSA (km²)	VZA (°)
Boresight	2.0	4.8	9.5	39.3
36.5°N, 100°W	2.1	4.8	10.1	42.4
Washington, DC	2.3	5.1	11.3	48.0
Seattle	3.2	6.2	16.8	61.7
Los Angeles	2.1	5.6	11.3	48.0
Boston	2.5	5.5	13.0	53.7
Miami	1.8	4.9	8.6	33.2
San Juan	1.7	5.6	9.2	37.4
Mexico City	1.6	4.7	7.7	23.9
Can. tar sands	4.1	5.6	20.8	67.0
Juneau	6.1	9.1	33.3	75.3

NASA

Smithsonian