Updates to surface reflectance for trace gas retrievals

Peter Zoogman, Kelly Chance, Xiong Liu, Qingsong Sun, Crystal Schaaf, Tobias Mahr, Thomas Wagner

TEMPO Science Team Meeting May 27, 2015

Ozone absorption in the Visible

- Ozone has weak spectral features in the Chappuis band
- Since the atmosphere is optically thin in the visible, can get information near the surface
- But retrieval is more sensitive to errors in surface reflectance

- Spectral variation
- Dependence on land cover
- Changes with viewing geometry

Pictures by Don Deering

Reflectance Spectra by Surface Type

- Obtained lab spectra of possible ground cover
 - Includes vegetation, soils, rocks, manmade materials
 - **Update**: added spectra from USGS database , have collaborators at SLU who are compiling a new albedo database

- Obtained lab spectra of possible ground cover
 - Includes vegetation, soils, rocks, manmade materials
 - **Update**: added spectra from USGS database , have collaborators at SLU who are compiling a new albedo database
- **Update**: added 4th EOF for use in trace gas retrievals.

Viewing Geometry from MODIS

Bidirectional Reflectance Distribution Functions: Causes

Mirror BRDF: specular reflectance

Volume scattering BRDF: leaf/vegetation reflectance

Gap-driven BRDF (Forest): shadow-driven reflectance

MODIS Composite Surface Reflectance (True Color) [Schaaf et al. 2002]

Seasonal Variation

We combine MODIS data at discrete bands with EOFs to create best estimate of surface reflectance spectra

MODIS BRDF factors allow us to reconstruct the geometric variation of reflectance – even at wavelengths not measured by MODIS!

MODIS/GOME-2 Comparison GOME-2 provides Lambertian Equivalent Reflectance (LER) over all scenes MODIS Blue-sky albedo / GOME-2 LER MODIS/GOME-2 mean difference comparison: Huntsville, AL over TEMPO FOR 0.2 - MODIS 0.4 GOME-2 Difference 0.1 0.2 Reflectance 0.0 0.0 -0.1 -0.4500 700 800 500 700 800 400 600 900 400 600 900 wavelength (nm)

Using MODIS or GOME-2 may provide similar shapes for the surface reflectance spectrum for 450-700 nm

Snow/Ice Scenes

Conclusions

- Surface Reflectance in the visible has strong variability (spectral, spatial, seasonal) which we need to capture for ozone profiling
- 4 EOFs capture >99.5% of the spectral variation of surface reflectance from different land cover materials (400 900 nm)
- Fit EOFs to MODIS observed reflectance climatology (adjusted for viewing geometry) to generate high spectral resolution reflectance for use in TEMPO retrievals
- Can use GOME-2 for scenes not covered by MODIS (snow/ice, water)

