TEMPO Ground Systems: Cloud Processing

Ewan O’Sullivan
John C. Houck
SDPC Software Developers

May 27, 2015
Starting point: OMI Raman-scattering cloud code (OMCLDRR)

Modification for TEMPO
 - Changes common to all science codes
 - Cloud-specific changes

Testing

Resource usage

Further work
Main products:
- Cloud Fraction
- Cloud Pressure (optical centroid pressure)

Code characteristics:
- ~10000 lines of Fortran90, ~120 subroutines / functions
- Inputs:
 - HDF-EOS2/HDF4 radiance and irradiance
 - ASCII and fortran binary format calibration files (climatologies, cross-sections, lookup tables, etc.)
- Output: HDF-EOS5/HDF5

Fast code: ~70s to process one OMI orbit.
Modifications for TEMPO: common to all codes

- **File format changes:**
 - TEMPO will use netCDF4/HDF5 throughout
 - Replace HDF-EOS with TEMPO I/O library built on netCDF4 (libtio)

- **Error handling and logging:**
 - ECS SDP Toolkit over-complicated for our needs
 - Replace with dedicated error handling and logging library (libtell)

- **Compilers:**
 - OMCLDRR built using PGI compiler
 - TEMPO software development uses GNU and Intel compilers
- Remove/disable unused experimental/test code

- Remove OMI-specific features
 - Spatial zoom mode, small pixel data, row anomaly, etc.

- Reformat fortran binary calibration files to netCDF
 - Smaller, human readable files with no significant loss of speed

- Results:
 - ~1000 lines of code removed,
 - netCDF I/O added but HDF-EOS I/O retained for testing,
 - Speed of code retained.

- Refactoring for TEMPO mostly complete
Testing

- **Regression testing**
 - Nightly build compiles and runs GNU and Intel versions of code every weekday, using OMI data
 - Output compared with baseline file “blessed” by GSFC developers
 - Cross-comparison of HDF-EOS and netCDF inputs/outputs
 - Tests specific capabilities: spline and linear interpolation, wavelength shift & squeeze, output of residuals

- **Integration testing**
 - Reduced-size TEMPO-format granule processed through Cloud, NO$_2$, HCHO codes, using pipeline manager prototype

- **Throughput tests**
 - Tests with full-size TEMPO granule - no problems identified
Resource Usage

- Time to process one OMI orbit: ~70s (Intel Xeon 2.8 GHz)
- Memory usage: ~112 MB

- Compare to other science codes:
 - Total O_3: ~70s
 - Trace gas (HCHO, NO$_2$): ~1 hour
 - O_3 profile (not yet updated for TEMPO): several hours

- TEMPO 6-minute granule size equivalent to ~2.5 OMI orbits
 - Tests confirm equivalent scale-up in processing time.

- Conclusion: Cloud code will be a minor resource user, no problems expected even with increased capabilities
Further work / TBD

- Incorporate improvements from GSFC developers:
 - Uncertainty estimation
 - Improved surface reflectance climatology

- Issues to be resolved:
 - Test data
 - Cloud mask product

- CDR-level review of Cloud, Trace gas, and Total O$_3$ codes scheduled for October
 - We expect to have a prototype pipeline including all three codes, updated for TEMPO, ready for the review

- Take-home message: Cloud code modifications for TEMPO on schedule, no problems expected