Advancing Measurements of Tropospheric NO$_2$ from Space: New Techniques and Application to OMPS

Kai Yang (UMCP)
Simon A. Carn (MTU)
Cui Ge, Jun Wang (UNL)
Russell R. Dickerson (UMCP)

K. Yang, 2nd TEMPO Science Team Meeting, May 21 – 22, 2014, NIA, Hampton, VA
Outline

• Algorithm Basis: NO$_2$ Measurement Sensitivity
• New NO$_2$ Retrieval Technique: Direct Vertical Column Fitting Algorithm
• New Strat-Trop Separation Technique: Sliding Median
• Application to S-NPP/OMPS and Comparisons with Aura/OMI
• Future Development
NO₂ Measurement Sensitivity:

Cross Section × Air Mass Factor

NO₂ Differential Cross Sections

Sensitivity to tropospheric NO₂:
OMI 4 to 8 times > OMPS

K. Yang, 2nd TEMPO Science Team Meeting, May 21 – 22, 2014, NIA, Hampton, VA
New NO$_2$ Algorithm:
Direct Vertical Column Fitting (DVCF)

Basic approach: Iterative spectral fitting to minimize the difference between measurements and radiative transfer simulations

\[
\ln I_m(\lambda) - \ln I_{TOA}(\lambda) = V \int_0^\infty \frac{\partial \ln I_{TOA}(\lambda)}{\partial \tau_z} S_z \sigma(\lambda, T_z) d\tau - \sum_i \xi_i \sigma_i(\lambda, T_i) + \epsilon.
\]

- NO$_2$ vertical column : V
- NO$_2$ Shape factor : S_z
- Other absorber slant column : ξ_i
- Altitude-resolved Air Mass Factor : $-\frac{\partial \ln I_{TOA}}{\partial \tau_z}$

K. Yang, 2nd TEMPO Science Team Meeting, May 21 – 22, 2014, NIA, Hampton, VA
Improvements over DOAS

New algorithm allows more complete treatment of algorithm physics

• Self consistency: surface reflection, cloud (MLER) parameters, and their spectral dependence are retrieved from the same spectral range. Enable better handling of surface reflectance variation and cloud/aerosol conditions.

• More accurate in accounting for the effects of spectral and altitude variations in measurement sensitivity

K. Yang, 2nd TEMPO Science Team Meeting, May 21 – 22, 2014, NIA, Hampton, VA
Artifact and Bias Correction

Radiance correction schemes developed with the new algorithm:

• Soft calibration of measured radiance based on internal consistency
• Residual analysis to derive static and dynamics corrections to remove biases and spectral interferences
• Stable instrument performance allows corrections derived from one time period to be effective for other time periods.

K. Yang, 2nd TEMPO Science Team Meeting, May 21 – 22, 2014, NIA, Hampton, VA
New Strat-Trop Separation (STS): Orbit-Based Technique

Basic idea

• Localized (small scale) features in the strat fields are attributed to tropospheric signals due to shape factor prescription mismatch.

• Smoothing out these localized features improve both strat and trop NO$_2$ fields.
Orbit-Based STS: Procedures

- Initial STS done using tropopause and shape factor
- Two smoothed strat fields from sliding median of each cross-track position of an orbit: ~2° and ~20° latitude bands
- The excesses (+) and deficits (−) of strat NO₂ are the difference between the two smoothed fields.
- Trop columns adjustment: strat excesses are added to and deficits are subtracted from the trop fields, whilst accounting for their different measurement sensitivities.
Orbit-Based Example: Tropospheric Adjustment

K. Yang, 2nd TEMPO Science Team Meeting, May 21 – 22, 2014, NIA, Hampton, VA
Orbit-Based STS: Advantages

• Each cross track done independently: without mixing measurements at different local time
• Measurement characteristics preserved: without increasing tropospheric NO$_2$ noise
S-NPP OMPS NO$_2$

New techniques applied to OMPS observations in the spectral range: 345 – 378 nm

First Global NO$_2$ Measurements form UV
OMPS: NO$_2$ Total Slant Columns

03/21/2013

09/22/2013

K. Yang, 2nd TEMPO Science Team Meeting, May 21 – 22, 2014, NIA, Hampton, VA
OMPS: NO$_2$ Stratospheric Vertical Columns

03/21/2013

09/22/2013

K. Yang, 2nd TEMPO Science Team Meeting, May 21 – 22, 2014, NIA, Hampton, VA
OMPS: NO$_2$ Tropospheric Vertical Columns

03/21/2013

09/22/2013

K. Yang, 2nd TEMPO Science Team Meeting, May 21 – 22, 2014, NIA, Hampton, VA
Comparisons with OMI

OMPS tropospheric NO$_2$ measurement sensitivity is similar to that of OMI achieved with standard operational (DOAS-based) algorithm:

- OMPS slant column precision is better than 10^{15} molecules/cm2, but slightly less than OMI
- Tropospheric column precision $\sim 3\times10^{14}$ molecules/cm2, better than OMI

OMPS continues and extends Aura/OMI long-term data records
Comparison: OMI vs OMPS
Monthly Mean: July 2013

OMPS

OMI

K. Yang, 2nd TEMPO Science Team Meeting, May 21 – 22, 2014, NIA, Hampton, VA
Comparison: OMI vs OMPS
Monthly Mean: December 2013

K. Yang, 2nd TEMPO Science Team Meeting, May 21 – 22, 2014, NIA, Hampton, VA
Comparison: OMI vs OMPS
Monthly Mean: December 2013

Latitude = 36 Degree
Summary

• A new algorithm for improved NO$_2$ retrieval from space-based UV/Vis spectral measurements: OMI, GOME-2, OMPS, TROPOMI, TEMPO, and ...

• A new strat-trop separation approach, suitable for near-real-time application

• New correction schemes enabled by the new algorithm, for bias reduction and sensitivity enhancement.
Algorithm Advances Enable Daily Global Pollution Monitoring with OMPS

SO₂ (DU)

NO₂ (10¹⁵ cm⁻²)

UV Alₜ
Unprecedented SO$_2$ Sensitivity

OMPS October 2013 Monthly Mean ISF Algorithm

K. Yang, 2nd TEMPO Science Team Meeting, May 21 – 22, 2014, NIA, Hampton, VA