GeoTASO Project Summary and Relevance

Jim Leitch Ball Aerospace jleitch@ball.com 303-939-5280

Ball Aerospace & Technologies Corp. Agility to Innovate, Strength to Deliver

4/23/2013

Sensor Concept Overview

- Airborne nadir-viewing wide-swath imaging spectrometer
- Two channel spectrometer uses:
 - 1st order diffraction for Visible
 - 2nd order diffraction for UV
- Dichroic beamsplitter and spectral filtering key elements in multi-order design
- Polarization: Low polarization sensitivity telescope and electronic depolarizer for spectrometer
- Field-swappable spectrometer slits to change spectral passband and sampling

GeoTASO Status

- NASA ESTO funded project close to completed:
 - Demonstrated multi-order spectrometer for air quality measurements
 - Fielded reconfigurable airborne system and collect real scene data
 - Used data to test air quality retrieval algorithms
- Airborne system
 - Sensor, data collection/control system, zenith fiber port, and nadir port window form system
 - Configured to fly on NASA's Falcon HU-25C airplane
 - Mount/window can be adapted for other platforms
- Flight data
 - Have data from flight tests in Virginia and flight campaign in Houston (w/DISCOVER-AQ)
 - Data (including viewing/solar information) available in HDF5 format
 - Have data for a variety of scenes, different altitudes, different slit sizes, different times of day
- Calibration data
 - Measurements mainly from testing at Goddard
 - Calibration includes radiometric, polarization
 - Working with algorithm team to improve Level 1b data

Spectral filtering:

 Needs good rejection of unwanted wavelengths

Dichroic

Offner spectrometer grating:

- Offner form of spectrometer ideal for spectral imaging, but needs convex, blazed grating
- Second attempt grating meets requirements:
 - High efficiency peaked at 310 nm
 - Low scatter/ghosting

Depolarizer/Changeable slit assy:

- Electronic depolarizer from PolZero ACT project
- Precision-registered slit holder for field slit swaps

Sensor Design and Assembly

Thermal Enclosure and Frame

Langley's Falcon HU-25C

Parameter	Value
Max altitude	12 km
Swath	9 km
Ground spot	40 x 80 m
Ground sampling	10 x 50 m
Single pixel SNR	20 – 50

• 32 total flight hours of data

- July test flights over VA and Chesapeake Bay
 - Land/water and urban/rural sites
 - Overflight of Langley ground site
 - Duplicated ACAM test flight path
- September Houston campaign:
 - Coflights with B200 (ACAM and HSRL) over urban sites
 - Coflight with B200 over Gulf out to GeoCAPE boat
 - Different slit widths on different days
 - Tested depolarizer effect over land/water

Flight Data and Retrieval Highlights

 NO_2 slant columns measured over Houston on 24 September 2013 at ~500 × 500 m resolution. GeoTASO flew the same ground tracks as the DISCOVER-AQ team to enable direct comparisons. (courtesy Caroline Nowlan, SAO)

GeoTASO flew over the Gulf out to the Geo-CAPE ocean study boat (seen in the GeoTASO image). A proposal from OSU to analyze the data has been submitted. (courtesy Curt Davis, Oregon State)

molecules cm

 NO_2 slant columns measured over North Carolina's three largest coal power plants on 24 September 2013 at ~500 × 500 m resolution during flight home from Houston to NASA Langley. (courtesy Caroline Nowlan, SAO)

Closeup of the Roxboro Steam Plant NO2 plume. GeoTASO measured enhanced NO2 >40 km downwind of the plant.(courtesy Caroline Nowlan, SAO)

Surface reflectance studies tie radiance levels to features like trees (blue) and green grass (yellowgreen) to develop a spectral reflectance model. (courtesy Jun Wang, U Nebraska)

Initial Spectral Signal Measurements

Nebraska

Measured spectral signal close to predictions

- Aerosols and surface reflectance
 - Specific bands of interest identified and flight data examined
 - Comparison of model-predicted radiance and measured radiance shows need for absolute radiance calibration of the visible channel
- Trace gas pollutants:
 - NO₂ retrievals using flight and zenith sky data from 420nm to 460nm show high sensitivity
 - HCHO retrievals using 330-360 nm show need for better fixed pattern calibration/characterization of UV channel
- Instrument characterization
 - Line shape
 - Wavelength calibration

Upcoming GeoTASO Activities

- Calibration and data processing at Ball
 - Characterize UV stray light
 - Use Ball calibration sphere for full field radiometric calibration
 - Reprocess flight data with new calibration values
 - Lineshape scans using tunable laser (funds permitting)
- Flight planning and campaigns
 - Flying July 23 Aug ? on Falcon in Front Range area of Colorado with DISCOVER-AQ and FRAPPE campaigns (59 hrs flight time funded)
 - 1. Coincident D-AQ tracks overflying B-200 with ACAM for data validation
 - 2. Diurnal studies flying D-AQ flight tracks with two sorties per day for morning-midday-afternoon-evening comparisons
 - 3. GEO-CAPE atmosphere retrieval studies: low pass and high pass over same site to validate ground return subtraction from retrievals. Perform over different terrain types - plains, vegetated forest, urban, foothills.
 - 4. Raster scans over Denver for AQ map.

