Tropospheric Emissions: Monitoring of Pollution

O₂-O₂ cloud algorithm for TEMPO

Huiqun (Helen) Wang, John Houck, Gonzalo Gonzalez Abad, Caroline Nowlan, Ewan O'Sullivan, Xiong Liu, Kelly Chance & The TEMPO Team

Smithsonian Astrophysical Observatory

Alexander Vasilkov, Eun-Su Yang Science Systems and Applications Inc.

> Joanna Joiner NASA Goddard Space Flight Center Robert Spurr RT Solutions Inc.

TEMPO Science Team Meeting 2022

Smithsonian

<u>Cloud_O4 is integrated into TEMPO SDPC pipeline</u>

Adapting NASA OMI O_2 - O_2 cloud algorithm to TEMPO Vasilkov et al., 2018, Atmos. Meas. Tech., 11, 4093-4107, doi:10.5194/amt-11-4093-2018 cloud albedo $I_{\rm m} = I_{\rm g}(R_{\rm g})(1-f) + I_{\rm c}(R_{\rm c})f$ (1)A cloud algorithm based on the O₂-O₂ 477 nm absorption band featuring an advanced spectral fitting method and the use of surface surface albedo effective cloud fraction geometry-dependent Lambertian-equivalent reflectivity surface pressure Alexander Vasilkov¹, Eun-Su Yang¹, Sergey Marchenko¹, Wenhan Qin¹, Lok Lamsal², Joanna Joiner³, $SCD = AMF_g(P_s, R_g)VCD(P_s)(1 - f_r)$ Nickolav Krotkov³, David Haffner¹, Pawan K. Bhartia³, and Robert Spurr⁴ + AMF_c(P_c , R_c)VCD(P_c) f_r , (4) cloud optical centroid pressure NASA KNMI 60 60 30 atitude Latitude -30 -30 -60 -60 -120 -60 60 120 180 -180 -120-60 60 120 180 -180 Longitude Longitude -140

Pressure difference (hPa)

Pressure difference (hPa)

Effective Cloud Fraction (f) is calculated using the reflectance at 466 nm Cloud Pressure is derived using the SCD retrieved from O_2-O_2 477 nm feature

Spectral Fitting O₂-O₂ SCD

Typical Beer-Lambert Contributions of Molecules

SAO's O2-O2 Slant Column Density Retrieval -TEMPO Operational algorithm

Table 1. Direct spectral fitting for O_2 - O_2 .

Fitting window	460.0-488.0 nm	
Baseline polynomial	2nd order	
Scaling polynomial 🔍	1st order	
Solar reference spectrum	Chance and Kurucz (2010)	
Raman Scattering	Derived using Chance and Spurr (1997)	
Undersampling correction	Derived using Change et al. (2005)	
Reference cross sections	O ₃ Serdyuchenko et al., (2014) at 223K NO ₂ Vandaele et al. (1998) 220K O ₂ -O ₂ Finkenzeller and Volkamer (2022). H ₂ O HITRAN 2020 at 293K	

Comparison of OMI O₂-O₂ SCD

SCD dependence on O_2-O_2 temperature

Т (К)	O ₂ -O ₂ SCD (10 ⁴³ molec ² cm ⁻⁵)
203	y203K=0.8423*X-2.0170e-2
233	y233K=0.9318*X-1.3336e-2
253	y253K=0.9680*X-5.8256e-3
273	y273K=1.0000*X
293	y293K=1.02716*X-2.4064e-3

Look-Up Tables (LUTs) for TEMPO O₂-O₂ Cloud

Variable	Nodes	
Solar Zenith Angle	,5,10,15,20,25,30,34,38,42,46,50,54,57,60 63,66,69,72,75,78,80,82,84,85,86,88.5,89	<list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item>
Viewing Zenith Angle	0,4,8,12,16,20,24,28,32,36,40,44,48,52,56, 60,64,68,72,75,78,81,84,87,89	
Relative Azimuth Angle	0,5,10,15,20,25,30,35,40,45,50,55,60,65,70 ,75,80,85,90,95,100,105,110,115,120,125,1 30,135,140,145,150,155,160,165,170,175,1 80	
Surface Albedo	0.0,0.01,0.02,0.04,0.06,0.08,0.10,0.12,0.14 ,0.16,0.18,0.20,0.30,0.40,0.50,0.60,0.70,0. 80,0.90,1.00	
Surface/Cloud Pressure (hPa)	1100,1050,1013,899,795,701,617,541,472,3 57,308,265,227,194,166,142,121,104,89,76, 65,55	

Results using Synthetic TEMPO spectra

effective cloud fraction

cloud pressure (Pa)

The cloud O4 algorithm is working in the TEMPO SDPC pipeline