Tropospheric Emissions: Monitoring of Pollution

TEMPO Algorithms

 Xiong Liu, Kelly Chance, Gonzalo González Abad, Caroline Nowlan, John Houck, John Davis,
 Ewan O'Sullivan, Juseon Bak, Chris Chan Miller, Huiqun Wang, Raid Suleiman, Dave Flittner², Nischal Mishra², Zachary Fasnacht³, Jeff Geddes⁴, Dave Haffner³, Joanna Joiner⁵, Emma Knowland^{6,5}, Can Li^{7,5}, Wenhan Qin³, Rob Spurr⁸, Omar Torres⁵, Alexander Vasilkov³,

Jun Wang⁹ & The TEMPO Team SAO ²LaRc ³SSAI ⁴BU ⁵GSFC ⁶GESTAR ⁷UMCP ⁸RT Solution ⁹Univ. Iowa

TEMPO Sci. Team Meeting 2022

May 31-June 2, 2022

Hours Areas

Outline

- Algorithm Overview (X. Liu)
 - Data products, retrieval teams
 - Algorithm development status and plan
 - TEMPO product distribution
- L0-1b processor (X. Liu)
- Ozone profile and tropospheric ozone algorithm (X. Liu)
- NO₂ and HCHO algorithms (C. Nowlan & G. Gonzalez Abad)
- \Box O₂-O₂ cloud algorithm (H. Wang)
- \Box SO₂ algorithm (C. Li)
- NRT production (P. Zoogman)
- Discussion

Baseline Products (Variables) & Requirements

Species/Products	Required Precision	Temporal Revisit*
0-2 km O ₃ (Selected Scenes) Baseline only	10 ppbv	2 hour
Tropospheric O ₃	10 ppbv	1 hour
Total O ₃	3%	1 hour
Tropospheric NO ₂	1.0 × 10 ¹⁵ molecules cm ⁻²	1 hour
Tropospheric H ₂ CO	1.0 × 10 ¹⁶ molecules cm ⁻²	3 hour
Tropospheric SO ₂	1.0 × 10 ¹⁶ molecules cm ⁻²	3 hour
Tropospheric C ₂ H ₂ O ₂	4.0 × 10 ¹⁴ molecules cm ⁻²	3 hour
Aerosol Optical Depth	0.10	1 hour

- * # of hourly measurements to be averaged to achieve required precision
- Mission duration: 20 months for baseline
- Spatial resolution: < 60 km² for baseline (4 native pixels coadded)

Aerosols, SO₂, C₂H₂O₂ were removed from baseline products during KDPC
 Proposed to bring them back along with additional products and produce NRT/off-line products for some species, pending on funding from Science Needs Working Group (SNWG) in late 2022 or 2023.

Cloud product (cloud fraction, cloud pressure): used in trace gas/aerosol retrievals

TEMPO Data Products

Proposed Additional & NRT Products

Level	Product	Algorithm	Major Outputs	Res km ² **	Freq/Size
LO	Digital counts	Raw to L0	Reconstructed/reformatted digital counts	2.0 x 4.75	Daily/hourly
L1-b	irradiance ^{NRT}	SAO L0-1	Calibrated & quality flags		daily
	radiance ^{NRT}	SAO L0-1	Geolocated,calibrated, viewing,geolocation&quality flags	2.0 x 4.75	Hourly, granule
L2	Cloud ^{NRT}	OMI 02-02*	Cloud fraction, cloud pressure	2.0 x 4.75	Hourly, granule
	O ₃ profile	SAO O3 profile	O3 profile, total/strat/trop/0-2 km O3 column, errors, a priori, AKs	8.0 x 4.75 ***	Hourly, granule
	Total O ₃	TOMS V8.5	Total O3, AI, cloud fraction	2.0 x 4.75	Hourly, granule
	NO ₂ ^{NRT}	SAO trace gas, BU strat/trop sep.	SCD, strat./trop. VCD, error, shape factor, scattering weights	2.0 x 4.75	Hourly, granule
	H ₂ CO ^{NRT}	SAO trace gas		2.0 x 4.75	Hourly, granule
	C ₂ H ₂ O ₂	SAO trace gas	SCD, VCD, error, shape factor, scattering	2.0 x 4.75	Hourly, granule
	H ₂ O	SAO trace gas	weights	2.0 x 4.75	Hourly, granule
	BrO	SAO trace gas		2.0 x 4.75	Hourly, granule
	Aerosol NRT	OMAERUV+UI AOCH	AAI, UVAOD, UVSSA, AOCH, VISAOD	8.0 x 4.75	Hourly, granule
	SO ₂ ^{NRT}	OMSO2 PCA	SCD, VCD (PBL,TRL,TRM,TRU,STL)	2.0 x 4.75	Hourly, granule
	TEMPO/GOES-R Synerg. product	GOES-R products on TEMPO pixels	Radiance, aerosol, cloud & mask, fire/hotspot, snow/ice, rainfall, precipitable water, land/sea surface T, lightning	2.0 x 4.75	Hourly, granule
L3	Gridded L2	SAO L2-3	Same as L2	2 x 2 (?)	Hourly, scan
L4	UVB	GEMS UVB	UV irradiance, erythemal irradiance, UVI	TBD	Hourly, scan

*Algorithm changed from NASA GSFC's OMCLDRR to GSFC's new O₂-O₂ cloud algorithm combined with SAO's trace gas retrieval algorithm to retrieve O2-O2 SCDs. ** Spatial resolution at center of FOR. *** Might be at 8 x 9.5km²

Black: baseline, green/orange/purple: additional products (being proposed)

NRT: NRT products & off-line products (with additional NRT funding, otherwise produce 1 product within 3-6 hours except for O_3 profile)

TEMPO TEMPO Algorithm Teams

Operational Algorithm	Personnel
Raw to LO	John Davis
L0-1b	John Houck, Xiong Liu, Dave Flittner, Weizhen Hou, Jim Carr, Chris Chan Miller
Ozone profile	Xiong Liu, Juseon Bak, Weizhen Hou
Total ozone	Dave Haffner, Joanna Joiner
Nitrogen dioxide	Caroline Nowlan, Gonzalo González Abad, Jeff Geddes, Chris Chan Miller
Formaldehyde	Gonzalo González Abad, Caroline Nowlan, Hyeong-Ahn Kwon, Chris Chan Miller
Glyoxal	Gonzalo González Abad, Hyeong-Ahn Kwon, Chris Chan Miller
Clouds	Huiqun Wang, Alexander Vasilkov, Eun-Su Yang, Joanna Joiner
Sulfur dioxide	Can Li, Nicolay Krotkov
Aerosols	Omar Torres, Jun Wang
Operational implemen	tation and IT support @ SAO Science Data Processing Center (SDPC) by John Houck

Algorithm Development Status & Plan

- **SDPC V3 (launch ready) completed in Feb. 2022, verification almost done**
- L0-1b updates: T-dependent dark current correction, straylight correction based on 1-D PSF, INR using GOES-R
- □ Major updates to L1-2 algorithms (O₃ profile, NO₂, HCHO, cloud, total O₃):
 - CLDO4^{new}: SAO O₂-O₂ fitting + GSFC's O₂-O₂ cloud at ~477/466 nm (Huiqun Wang, Eun-Su Yang, Alexander Vasilkov)
 - > NASA GMAO's GEOS-CF trace gas profiles and meteorology (Emma Knowland and GMAO)
 - Hourly resolved monthly mean Geometry-dependent Lambertian Equivalent Reflectivity (GLER) climatology (Christopher Chan Miller, Wenhan Qin, Zachary Fasnacht)
 - > Interactive Multi-sensor snow & ice mapping systems (IMS) (Gonzalo Gonzalez Abad)

Development of other products

- > CHOCHO, H₂O, BrO: will use SAO's trace gas algorithm
- > SO₂: OMI PCA SO₂ algorithm adapted for TEMPO/GEMS from synthetic/GEMS data (Can Li)
- Aerosols: being adapted from OMI/TROPOMI AERUV algorithm (Omar's team), from EPIC/TROPOMI Aerosol Layer Height algorithm using O₂-A/B (Jun Wang's team)

Continue to make minor updates to improve beyond V3

- Further improvements using synthetic and GEMS data: destriping, radiance reference & background correction, cross section updates, empirical correction
- > Algorithm refinement/optimization during commissioning (Jun-Aug 2023) and nominal operation

TEMPO TEMPO Data Products Distribution

- TEMPO commissioning: ~L+105-L+195 (mid-May – mid August)
- □ Nominal operation: ~6 months after launch
- Plan to release initial L1b in ~4 mons, L2/3 in ~6 mons to the public after commissioning (i.e., Dec 2023 for L1b, Feb 2024 for L2/3).
- Provide data products to validation team priori to the public release via ASDC.

EPA RSIG3D Gateway

TEMPO data can be served directly through the EPA RSIG. <u>https://www.epa.gov/hesc/remote-sensing-information-gateway</u>

Slides from Jeff Walters, Tim Larson at TEMPO STM 2020 & EAWNov2021

ASDC Data Archival & Distribution: Tools and Services

- NASA Earthdata Search
 CMR Search

 Metadata
- ✓ NASA WorldView GIBS API ∘ visualization

OPeNDAP

NASA

- ✓ Harmony and OPeNDAP
 - transform
 subsetting
 reformatting
 distribution
- ✓ HTTPS data access
 o datapool
 - permanent URL/direct access
 - enables scripts/workflow
- ✓ Geospatial Web Services
 - WCS
 WMS
 ArcGIS
 Image
 Service
- ✓ Example scripts
 - Python/Jupyter Notebook
 - R scripts
 - contributed tutorials/scripts

User Support and Other Resources

Earthdata Login <u>https://urs.earthdata.nasa.gov</u> Earthdata Forum <u>https://forum.earthdata.nasa.gov/</u> ASDC User Support supportasdc@earthdata.nasa.gov

Tropospheric Emissions: Monitoring of Pollution

TEMPO L0-1b Processor

Xiong Liu¹, Dave Flittner², Kelly Chance¹, John Houck¹, Jim Carr³, Chris Chan Miller¹ and the TEMPO Team xliu@cfa.harvard.edu

Smithsonian Astrophysical Observatory
 NASA Langley Research Center
 Carr Astronautics

TEMPO Sci. Team Meeting 2022 May 31-June 2, 2022

60 minutes

Measurement of Pollution

L0-1 Processor Overview

1PO

 Heritages from: OMI, TROPOMI, OMPS, GOME/GOME-2
 SCIAMACHY GEOTASO

Smithsonian

NASA

- TEMPO specifics
 > INR (geo-location) by Carr Astronautics
- T-dependent dark current correction
- Polarization correction

Requirements from SDPCRD [TEMPO-09-0003] labeled as 4.X.X₉

L0 ccd + L0 wavcal & **In-flight Calibration**

L0_inrprep: add spacecraft position & scan mirror orientation L0_inr: provide geo-location coordinates to all spatial pixels by transferring GOES geo-location accuracy to TEMPO

(On GOLES NOP and Registration (INR)

 Combine Earth orientation and spacecraft tracking to align tie points in the GOES imagery with TEMPO data

NA SA

- Two-pass Kalman filter (smoothing at end of hourly scan)
- Archive tie points
- Provide scan tailoring parameters

L0_inrpost

L0_inrpost: additional processing after INR to derive the final radiance product

- Calculate viewing geometry
- Snow/ice from IMS

- Flag pixels affected by sun glint
- Ferrain height (GMTED2010, 30 arc s)
- MODIS land cover type product MCD12Q1 (17 classes, 500 m res.)
- Correct for radiance error due to instrument polarization sensitivity

 Polarization correction:
 Combine instrument polarization sensitivity with quick estimate of atmospheric state & polarization (MLER/LER, clouds/surface albedo, total ozone) using LUTs

Verification and Validation Plan

- Verify/update image correction steps in the L0-1 during commissioning phase
- > Assess wavelength scale & ILS: L0-1b, L1-2
- Assess geo-location methodology, INR (registers TEMPO granules against GOES-R/S/T visible images and other fiducial points in L1b) during commissioning phase
- Assess out of field stray light assessed using unilluminated spatial pixels from early morning/late afternoon scans of CONUS
- Assess spectral stray light in shortest UV channels using radiative transfer
- Multi-pronged approach to radiometric validation: internal assessment, L2, high resolution solar reference, satellite intercomparison, comparison with RTM simulation

Tropospheric Emissions: Monitoring of Pollution

TEMPO Ozone Profile Retrieval Algorithm

<u>Xiong Liu</u>¹, <u>Juseon Bak</u>¹, Kelly Chance¹, Chris Chan Miller¹, Robert Spurr², Caroline Nowlan¹, G. Gonzalez Abad¹, John Houck¹, Ewan O'Sullivan¹, Matthew Johnson³

SAO 2. NASA AMES 3 RT Solutions xliu@cfa.harvard.edu

> TEMPO Sci. Team Meeting 2022 May 31-June 2, 2022

60 minutes

Measurement of Pollution

TEMPO Ozone Profile and Tropospheric O₃ Algorithm

- □ Adapted from OMI V2 (Liu et al., 2010; Bak et al., 2022): Spectral fitting + OE + VLIDORT
- **Fitting windows: 293-340 nm, 540-650 nm**
- □ OE constrained by O₃ profile apriori/climatology & measurement errors

$$\chi^{2} = \left\| \mathbf{S}_{y}^{\frac{1}{2}} \{ \mathbf{K}_{i} (\mathbf{X}_{i+1} - \mathbf{X}_{i}) - [\mathbf{Y} - \mathbf{R}(\mathbf{X}_{i})] \} \right\|_{2}^{2} + \left\| \mathbf{S}_{a}^{\frac{1}{2}} (\mathbf{X}_{i+1} - \mathbf{X}_{a}) \right\|_{2}^{2} \quad \mathbf{X}_{i+1} = \mathbf{X}_{i} + (\mathbf{K}_{i}^{T} \mathbf{S}_{y}^{-1} \mathbf{K}_{i} + \mathbf{S}_{a}^{-1})^{-1} \\ \{ \mathbf{K}_{i}^{T} \mathbf{S}_{y}^{-1} [\mathbf{Y} - \mathbf{R}(\mathbf{X}_{i})] - \mathbf{S}_{a}^{-1} (\mathbf{X}_{i} - \mathbf{X}_{a}) \}$$

Retrieve partial O₃ columns at ~24 layers as well as total, stratospheric, tropospheric, and 0-2 km O₃ columns, other trace gases, and auxiliary parameters. Output includes retrieval a priori, retrieval error and its covariance matrix, averaging kernels.

TEMPO Ozone Profile and Tropospheric O3 Algorithm

- This example: SZA=25, VZA=45, AZA=86, SNR with 4 pixels coadded
- Adding visible improves retrieval sensitivity in the lower trop. and help separate free trop. O₃ from boundary layer O₃
- Under ideal conditions (4-pixel coadded): 3-5 total DFS with up to ~1.5 in the troposphere, and up to ~0.5 DFS in 0-2 km
- Challenge: weak VIS O₃ signal, strong interferences from surface, aerosol, clouds, requires accurate radiometric calibration in UV/VIS
- □ Climatological a priori: a combination of tropopause-based climatology (Bak et al., 2013) with diurnally-resolved GEOS-CF O₃ data
- Combine GLER climatology (MODIS/SCIA. BRDF database over land, glint kernel over ocean) at high spatial res. with existing spectral albedo libraries (e.g., ASTER, USGS) to improve characterization pf surface albedo spectra
- □ Time consuming due to on-line radiative transfer calculations: perform retrievals with 4-8 pixels with spatial resolution of 8.0 x 4.75-9.5 km2
- Continue to optimize, speed up visible with LUT correction, derive empirical calibration after launch

TEMPO Ancillary Inputs Used in O3 Profile and Total O3 Algorithms

Input	Ozone profile algorithm	Total ozone algorithm (TOMSV8.5)
Cloud-top pressure	TEMPO O ₂ -O ₂ cloud product Defaults to a cloud pressure climatology (OMI- derived) if cloud retrieval is unavailable.	TEMPO O ₂ -O ₂ cloud product Defaults to a cloud pressure climatology (OMI- derived) if cloud retrieval is unavailable.
Cloud fraction	Iteratively retrieved based on the MLER. If fc <=0 or >=1, it is set to 0 or 1, R _s or R _{cld} is retrieved instead.	Retrieved based on the MLER. If fc <=0 or >=1, it is set to 0 or 1, R _s or R _{cld} is retrieved instead.
Ozone profiles apriori	Tropopause-base climatology + GEOS-CF	TOMS V8 climatology (total ozone dependent, monthly / 10° zonally mean)
Surface albedo	Initialized with GLER climatology at 0.05, also iteratively retrieved	15% or directly retrieved as R_s if f_c =0
Temp. profiles	GEOS-CF	TOMS V8 climatology (monthly / 10°zonally mean)
Tropopause P	GEOS-CF	N/A
Surface Pressure	GEOS-CF, adjusted to terrain height	Climatology at 1/3° x1/3° from the TOMSV8.5
Snow/ice fraction	IMS data	Climatology at 1° x1° from the TOMS V8.5
Terrain height	L1b (GMTED2010)	L1b (GMTED2010)
Aerosols	Not explicitly treated	Not explicitly treated, but an aerosol correction is included

Back up slides

TEMPO Nominal Hourly Scan and Special Scans (GEO@91W)

NASA

Operate on geostationary communications satellite Intelsat 40e (IS-40e) at 91.1 ° W

- sands.
- S5p-TROPOMI NO2 product oversampled by Kang Sun.

- Boresight: 33.7°N, 91°W
- ~ 2035 good N/S pixels
- ~ 1226 steps/hr
- ~ 2.5 M pixels/hr
- # spatial pixels ~TROPOM
- 2 x 4.75 km² @center FOR
- FOR: N/S +/-210 pixels,

E/W +230/160 pixels

- Field of regard is optimized to cover both Puerto Rico and Canadian tar sands.
- S5p-TROPOMI NO2 product oversampled by Kang Sun.

- TEMPO research products will greatly extend science and applications
 - OCIO, IO, HNO₂, volcanic (SO₂ plume height and VCD)
 - > Additional/improved cloud with $O_2 O_2$ bands / $O_2 B$ bands
 - > Additional aerosol products from hyperspectral spectra, O_2 -B and O_2 -O₂-bands, and TEMPO + GOES-R synergy at @U lowa, NOAA, GSFC
 - Vegetation products: solar Induced fluorescence (SIF)
 - Diurnal out-going shortwave radiation and cloud forcing
 - Night lights: allows discrimination between lightning types
 - Higher-level products: Near-real-time pollution/AQ indices

RT vs. Off-line Trace Gas Products

- Implementing both NRT and off-line trace gas products (e.g., NO2, HCHO) for NO2, HCHO, aerosol, SO2, cloud in two separate processing pipelines
- **D** Major potential differences between NRT and offline products

	NRT	Off-line
Trace gas profiles/Met data	GEOS-CF	GEOS-CF Replay
Surface	GLER climatology	MODIS/VIIRS albedo/BRDF products
Spectral fitting	Normal spectral fitting	Improve radiance reference & cross- track correction, different fitting windows
L1B	Default Pol. Correction	Improved pol. correction with L2 retrievals (?), improved dark current (AM&PM dark current)
RTM	Look-up tables	On-line radiative transfer?
Aerosol correction	None	Improved aerosol fields?

NASA

L1b Requirements

- L1b products: Spectral Radiance, Irradiance and Uncertainty, Spectral Scale, Geolocation (lat/lon)
- ❑ PLRA: no requirement for radiance or irradiance, geolocation accuracy < 4km</p>
- ☐ Instrument design & performance requirements were derived from L2 precision req.
 - Signal to Noise Ratio (SNR) was the dominate factor for radiance performance
 - Radiometric Uncertainty: < 4% (1-sigma) for both irradiance & radiance
 - Albedo uncertainty: wavelength independent < 2%, dependent < 1%</p>

- Long-term (20 months) radiometric drift detection: < 0.9%</p>
- Nonlinearity: <2% of 98% well response, and knowledge (after corr.) < 0.5% from 2-98% of well response
- Pre-launch Wavelength mapping uncertainty: < 0.02 nm</p>
- Spectral stability (within 24 hours): < 0.1 nm for radiance & irradiance
- Spectral co-registration error: < 0.7 pixel between 2 bands, < 0.4 pixel within UV or visible bands

Table of SNR req. and with Beginning of Life

(BOL) as-built performance (4 Pixels coadded)

Req Number	Requirement			BOL SNR		EOL SNR	
	Atmospheric Constituent	Wavelength	SNK Requirement	As- Measured	Margin	Predicted EOL SNR	Margin
	02	(nm)	e-/e-		N/A	N/A	NI/A
	03	290	19.0	10 N/A			N/A
	03	300	40.1	49	5.4%	45	-2.4%
	03	305	161.9	191	17.8%	178	10.1%
	03	310	377	471	24.9%	447	18.5%
	03	320	1220	1664	36.4%	1621	32.8%
	O3, H2CO	330	2003	2829	41.2%	2779	38.7%
IKD-320 TSS EQ	O3, H2CO, Cloud	340	2013	2867	42.4%	2827	40.4%
122-23	H2CO, Cloud	350	1414	2717	92.1%	2685	89.9%
	NO2	420	836	2138	155.8%	2127	154.4%
	NO2	430	675	1681	149.0%	1670	147.4%
	NO2	450	733	1875	155.8%	1865	154.4%
	Cloud	490	1176	1886	60.4%	1879	59.8%
	03	540	1109	1813	63.5%	1806	62.9%
	03	600	987	1577	59.8%	1571	59.1%
	03	650	898	1383	54.0%	1376	53.2%
	Cloud	690	820	1195	45.8%	1188	44.9%

Earth-View TEMPO Signal to Noise Ratio (SNR) Verification Summary