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1. WRF-Chem/DART: An Introduction

WRF-Chem/DART is a community resource for realtime chem-
ical weather forecasting/data assimilation research and opera-
tions. It couples the Weather Research and Forecasting model
(WRF) with online chemistry (WRF-Chem) and the Data Assimi-
lation Research Testbed (DART). DART has been modified to in-
clude assimilation of in situ and remote/satellite observations of
atmospheric composition. Specifically, WRF-Chem/DART:

• Assimilates MOPITT and IASI CO total/partial column and/or
profile retrievals;

• Assimilates IASI O3 total/partial column and/or profile retrievals;
• Assimilates OMI O3, NO2, and SO2 total/partial column and/or
profile retrievals;

• Assimilates TROPOMI CO, O3, NO2, and SO2 total/partial col-
umn and/or profile retrievals;

• Assimilates TEMPO O3 and NO2 total/partial column and/or
profile synthetic retrievals;

• Assimilates MODIS AOD total column retrievals;
• Assimilates AirNOW in situ observations;
• Assimilates Retrieval profiles as raw retrievals (RETRs) or
”compact phase space retrievals” (CPSRs);

• Uses state variables localization;
• Constrains emissions with the State Augmentation Method
(SAM); and

• Includes a real-time scripting system;

Figure 1: Forecast skill scores for meteorological assimila-
tion only (Met EX), Met EX with assimilation of raw retrievals
(MP:VMRR EX and MP:L10VMRR EX) and Met EX with assim-
ilation of CPSR (CPSR EX). The remaining experiments are not
relevant to this presentation.

Figure 2: Forecast skill scores for meteorological assimilation
only (NO DA), assimilation of in situ observations (CICs-only),
and CICs-only with emissions adjustment (EMISS-CICs). EMISS-
CICs-no-VOC is not relevant to this presentation.

Figure 1 from Mizzi et al. (2016) shows that using WRF-
Chem/DART with assimilation of MOPITT CO CPSRs in
MP:CPSR EX produces ∼40% improvement in forecast skill com-
pared to not using CPSRs in MET EX, MP:VMRR EX, and

MP:L10VMRR EX. That improvement occurs due to the filtering
effect of the CPSR compression transform on the retreival errors.
Figure 2 from Ma et al. (2019) shows that constraining emissions
with WRF-Chem/DART and assimilation of in situ measurements
of criteria pollutants in EMISS-CICs improves forecast skill and
increases the predictability time from 6-12 hrs to 48-72 hrs com-
pared to not adjusting the emissions in CICs-only.

Together Figs. 1 and 2 illustrate the type of chemical weather
forecast skill improvment we expects to see from assimilating re-
trievals from satellites like TEMPO.

2. The Compact Phase Space Retrieval (CPSR) Algorithm

Mizzi et al. (2016) introduced the CPSR algorithm for efficient
storage and assimilation of full retrieval profiles. The CPSR al-
gorithm uses: (i) a “compression transform” to remove redundant
information in the retrieval profile; and (ii) a “rotation transform”
to account for error cross-correlations in the observation error co-
variance matrix. Those transforms are based on a singular value
decomposition (SVD) of the retrieval equation averaging kernel,
and an SVD of the compressed observation error covariance. The
mathematical derivation is as follows:

The quasi-optimal form of the retrieval equation is

yr − (I − A)ya − ε = Ayt. (1)

where yr is the retrieval profile (dimension n), I is the identity ma-
trix (dimension n×n), A is the averaging kernel (dimension n×n),
ya is the retrieval prior profile (dimension n), ε is the measurement
error in retrieval space (dimension n) with measurement error co-
variance Em (dimension n × n), and yt is the true atmospheric
profile (unknown; dimension n). Let the SVD of A be A = Φ∆ΘT .
Set the singular vectors associated with the zero singular values
to zero. Then transform Eq. 3 with ΦT to get

ΦT (yr − (I − A)ya − ε) = ∆ΘTyt. (2)
The compressed form of Em is ΦTEmΦ. Next, let the SVD of
the compressed error covariance be ΦTEmΦ = ΩΣΨT . Set the
singular vectors associated with the zero singular vlues to zero.
Finally, transform Eq. 3 with ΩT and scale the result by the in-
verse square of the associated singular values to get

Σ−1/2ΩTΦT (yr − (I − A)ya − ε) = Σ−1/2ΩT∆ΘTyt. (3)
Eq. 3 is the compressed and rotated form of the quasi-optimal re-
trieval equation. The analogous form of Em is the identify matrix.

Due to the rank deficient nature of A, the number of observations
to be assimilated from Eq. 3 is reduced by 1 − r

n where r is the
rank of A. Since r << n, the storage and computational saving
from using CPSRs can be substantial.

3. Application of CPSRs to TEMPO

Figure 3: Histogram of the synthetic TEMPO O3 SVD-based
DOFS.

For this analysis, we use one synthetic TEMPO retrieval granule
based on a GEOS-CF run for July 10, 2020. The granule con-
tains 512 xtrack points of which we use the center 358 points,
123 mirror step points of which we use the center 102 points, and
24 vertical layers (35,516 profiles). Since the CPSR benefits are
related to the rank of the averaging kernel, Fig. 3 shows a his-
togram of the SVD-based degrees of freedom of signal (DOFS)
for the subject granule. Since the DOFS mode is between 6.5
and 7.0, and the storage/computational savings is proprtional to
1− r

n , the potential CPSR savings is ∼70% for a DOFS of 7.0.

As an illustration, Figure 4(A) shows the mean reported averaging
kernel profiles for the six lowest elements of the retrieval profile,
and Fig. 4(B) shows the same mean averaging kerenl profiles af-
ter the forward and reverse CPSR compression transform. The
two figure are identical, demonstrating that no information is lost
by storing and/or assimilating the retrieval profiles in phase space.
We obtain the same results for all other averaging kernel profiles.

Figure 4: Mean averaging kernels for the six lowest elements of
the retrieval profile. Panel (A) is as reported. Panel (B) is after the
forward and reverse CPSR compression transform.

Figure 4 suggests that the greatest sensitivities are in the vicinity
of 100 hPa and 700 hPa. However, due to the rank deficient na-
ture of the averaging kernel, the vertical sensitivity structures in
Fig. 4 can be misleading.

Figure 5: Mean averaging kernel profiles after the CPSR trans-
form. Panel (A) shows the compressed profiles, i.e., the profiles
after removing the redundant information. Panel (B) shows the
compressed/rotated profiles, i.e., the profiles after removing re-
dundant information and accounting for the associated retrieval
error.

As explained in Mizzi at al. (2016; 2018), one should examine the
compressed/rotated averaing kernel to understand the true sensi-
tiviies, i.e., the sensitivities after removing redundant information
and accounting for the retrieval error associated with each profile.

Figure 5 shows the compressed averaging kernel profiles in panel
(A) and the compressed/rotated profiles in panel (B). The com-
pressed profiles show that the dominant sensitivities are at 100
hPa and above. However, after considering the associated errors,
Fig. 5 shows that the dominant modes have sensitivity throughout
the troposphere (Ak-6) and in the lower troposphere at 700 hPa
and below (Ak-5).

Finally, Fig. 6 shows the storage memory requirments for an ex-
ample TEMPO granule with/without applying the CPSR transform.

Figure 6: Storage memory requirements in megabytes (MB) for
32-bit words and a TEMPO O3 retrieval profile granule. ’Fixed’
refers to variables whose memory requirements cannot be re-
duced. ’Variable’ refers to variables whose memory requirements
can be reduced. The ’Max Reduction’ analysis assumes that the
retrieval, apriori, and apriori error profiles and the averaging ker-
nel, retrieval error covariance, and measurement error covariance
matrices can be reduced. The ’Min Reduction’ analysis assumes
that only the retrieval profile and the averaging kernel matrix can
be reduced

From Fig. 6 we see that one TEMPO O3 retrieval profile granule
requires ∼330 MB. With application of the CPSR transform, that
can be reduced to between ∼43 MB and ∼190 MB.

4. More Information

For more information on WRF-Chem/DART. chemical data as-
similation, CPSRs generally, or CPSRs as applied to TEMPO
O3 retrieval profiles, contact Dr. Arthur P. Mizzi by e-mail at
arthur.p.mizzi@nasa.gov or by phone at 303-903-5544.
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