

TEMPO PCA SO₂ Algorithm: Introduction and Preliminary Results

Can Li^{1,2}, Nickolay Krotkov², Joanna Joiner²

¹UMD/ESSIC, 2NASA/GSFC. Email: can.li@nasa.gov

Background and Motivation

SO₂ plays an important role in global/regional environment:

- A designated air pollutant.
- A precursor to sulfate aerosols (haze/acid deposition/climate).
- Helps to track volcanic plumes for aviation safety.

Hourly, high resolution measurements by TEMPO will greatly enhance capabilities of SO₂ monitoring over North America.

But there are also challenges:

- Anthropogenic SO₂ emissions from the U.S. have seen substantial reductions – requires algorithms with good sensitivity.
- TEMPO data volume > 10x larger than OMI necessitates fast algorithms, especially for near-real-time (NRT) applications.

Featured in 2018 EPA Air Trends Report

GSFC Principal Component Analysis (PCA) Spectral Fitting Algorithm

The data-driven PCA spectral fitting algorithm:

- A PCA technique is applied to the measured radiance spectra to extract spectral features (principal components, PCs);.
- The PCs represent various interfering geophysical processes and instrumental factors.
- They are used in spectral fitting to reduce the interferences in SO₂ retrievals.

Measured Sun-normalized radiance spectrum

SO₂ column amount

$$N(\omega, \Omega_{\mathrm{SO}_2}) = \sum_{i=1}^{n_{\mathrm{v}}} \omega_i v_i + \Omega_{\mathrm{SO}_2} \frac{\partial N}{\partial \Omega_{\mathrm{SO}_2}}$$

PCs from SO₂-free regions associated with processes (O₃ absorption, surface reflectance, RRS, measurement artifacts, etc.) other than SO₂ absorption

Pre-calculated SO₂ Jacobians (with assumed/retrieved O₃ profile, cloud fraction/pressure, surface reflectivity, *etc.*)

Fitting of the right hand side to the spectrum on the left hand side -> SO_2 column amount and coefficients of PCs (see [*Li et al.*, 2013; 2017; 2020] for details).

Evolution of the Operational OMI Anthropogenic SO₂ Product

(c) Latest PCA, updated Jacobians

 $1 DU = 2.69 \times 10^{16} \text{ molecules/cm}$

(Circles: points sources > 70 kt/year)

Public Release: 2014

Public Release: 2020

(PCA-based volcanic SO₂ product released in 2017)

The PCA-based algorithm significantly <u>improves the quality</u> of the operational OMI SO₂ product.

<u>Highly efficient</u> – spectral fitting takes ~3-4 min for an entire OMI orbit (single CPU).

<u>Straightforward implementation</u> – easily adapted for different sensors:

- ✓ Current operational algorithm for OMI and SNPP/OMPS (a variant also implemented by the GEMS team).
- ✓ NRT and direct readout implementations with OMI/OMPS.
- ✓ Demonstrated for TOMS, GOME, SCIAMACHY, TROPOMI, N20/JPSS-1/OMPS.

Consistent Retrievals between OMI and SNPP/OMPS

*Coverage gap due to cloud cover during the Indian summer monsoon

Implementation with TEMPO: Plan and Preliminary Results

- Each row (cross-scan-position) of the spatial (north south) dimension of the detector processed separately.
- Retrievals limited to SZA < 75° and VZA < 80° for now.
- Can process data on a granule-to-granule basis or process the entire hourly scan at once (processing time: ~20 min).
- A table lookup approach similar to that for OMI/OMPS algorithms will be employed for Jacobian/AMF calculations.

TEMPO SO₂ SCDs retrieved from synthetic radiance data for 07/01/2013.

Preliminary Results: Ohio River Valley and W Pennsylvania

Blue circles: sources > 30 kt/year based on OMI estimates between 2012 and 2015.

Preliminary Results: Standard Deviation of SO₂ SCDs

- Standard deviation calculated for blocks of 30 × 32 pixels.
- Dependence on SZAs and VZAs.
- For most of the CONUS, standard deviation is \sim 0.2-0.3 DU, greater than that of OMI over the Pacific (\sim 0.15-0.3 DU), but TEMPO has much finer spatial resolution.

Next Steps and Potential Applications

Next Steps:

- Finalize prototype algorithm for slant column densities, including input/output and data format.
- Adapt OMI/OMPS lookup tables and schemes for TEMPO Jacobian/AMF calculations.
- Further testing of TEMPO algorithm using GEMS data.

Potential Applications

- Emissions expect further improvement in source detection due to enhanced spatial and temporal resolution.
- Diurnal changes in SO₂ sources.
- Near-real-time volcanic hazard monitoring.
- Synergy between LEO and GEO, for example, for transboundary transport.