Impacts of soil NO_x emission on O_3 air quality in rural California

Jessie Zhang², Tong Sha^{1,2}, Xiaoyan Ma¹, Jun Wang², Nate Janechek², Yanyu Wang³, Yi Wang², Lorena Castro², Darrel Jenerette⁴

¹ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China ² Department of Chemical and Biochemical Engineering/ Center for Global and Regional Environmental Research, The University of Iowa, Iowa City, IA, USA ³ Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan

University, Shanghai 200438, China

⁴ Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA

TEMPO Science Team Meeting, June 2-3, 2021

Unified Inputs (initial/boundary conditions) for WRF-Chem: UI-WRF-Chem

Background

The trend of tropospheric NO₂ column densities observed by satellites

Nationwide NO₂ concentrations predicted by an ensemble of models

- The U.S. EPA reported a steady decrease in NO_x emissions from anthropogenic sources over the U.S.
- Soil NOx emissions may play a role but overlooked.

Motivation

California

- The highest agricultural output in the U.S.
- Extensive agricultural and natural drylands
- Experiencing warmer temperatures and increasing droughts
- Suffering from the O₃ pollution, especially over the rural region

- To improve the air quality and human health of California, understanding how soil NO_x emissions contribute to O₃ formation is necessary.
- Quantify the impacts of soil NO_x emissions on NO_x budget and O₃ pollution in California by using the WRF-Chem model.

Default soil NO_x emission scheme in the WRF-Chem

MEGAN MEGAN biogenic emissions calculate online based on the weather, land use data.

soil NOx flux =
$$A_{veget} \times f(T)$$

- A_{veget} is a emission factor based on vegetation type (only four types: Broad leaf, Needle leaf, Shrubs, Herbaceous biota)
- f(T) is a temperature response factor

Model underestimates soil NOx emissions

(Oikawa et al., 2015, Nature Communications)

Updated soil NO_x emission scheme in the WRF-Chem

Implementation of the BDSNP (Hudman et al., 2012) with <u>modifications:</u> Berkley Dalhousie Iowa Soil NO Parameterization (BDISNP)

- Land cover types: Updating the land cover types in WRF model by using the MODIS Land Cover Type (MCD12Q1) v6 in 2018 to reflect more diverse land covers
- Surface temperature representation: Using the GLDAS data to predict the initial and boundary condition of soil moisture and temperature, and directly adopting soil temperature at the top layer to simulate soil NO_x emissions
- <u>Climate zones distribution</u>: Using the modelled green vegetation fraction (VGF) to determine the arid and non-arid region (due to the response of soil moisture factor depending on climate zones)

Flow Chart of BDISNP

 $F_{SNO_{\mathbf{x}}} = A'_{\mathbf{b}}(N_{\mathbf{biome}} + N_{\mathbf{avail}}) \times f(T) \times g(\theta) \times P(l_{\mathbf{dry}}) \times (1 - \mathbf{CRF})$

Adjustment factor

Model experiments design and data description

Experiment	Description	
Default	The simulation uses MEGAN to calculate soil NO_x emissions during July 2018 in California.	The improvement of model performance after updating the soil NO _x emissions scheme in the WRF-Chem The impacts of soil NO _x emissions on the air quality
BDISNP	The simulation uses BDISNP to calculate soil NO_x emissions, and also updates land type to the year of 2018 by using MODIS Land Cover Type (MCD12Q1) Version 6 data during July 2018 in California.	
NoSNOx	The simulation is the same as BDISNP except that the NO_x emissions from soils are turned off.	

Variables	Observation Data	
NO ₂ columns density	TROPOMI (3.5 $ imes$ 7 km ²)	
Soil moisture and temperature	Soil Moisture Active Passive Level 4 Soil Moisture (SMAP L4_SM) product (9 \times 9 km²)	
Precipitation	Global Precipitation Measurement (GPM) (0.25 $^\circ$ $ imes$ 0.25 $^\circ$)	
Surface NO ₂ and O ₃ concentrations	U.S. EPA Air Quality System (AQS)	

Soil NO_x emissions and Tropospheric NO_2 columns density

Simulated monthly mean soil NO_x emission flux

CA: California CL: Cropland

 BDISNP increases soil NO_x emissions fluxes by a factor of 7-9.

BDISNP improves the performance of simulated tropospheric NO₂ columns.

Rain-induced emission pulse — observations

The precipitation appeared in the Sheephole Valley (located in the Mojave Desert) on 10 July, accompanied with the enhancement of soil moisture and NOx column concentration.

Rain-induced emission pulse — model results

The model with BDISNP scheme:

- Shows a better agreement with the TROPOMI NO₂ columns;
- reproduces the observed raininduced pulse emission in drylands;
- giving us confidence in soil NO_x emissions estimates.

Impact of soil NO_x emissions on air quality

Diurnal variation of simulated and observed surface NO_2 and O_3 concentrations in the rural area downwind from LA, California during July 2018

BDISNP show a better agreement with the observed diurnal variation of NO₂ and O₃

Impact of soil NO_x emissions on air quality

Contribution of soil NOx to surface NO₂ and O₃

- This rural region is NO_x-limited and the air quality is sensitive to soil NO_x emissions
- Therefore, the intensive agriculture and dry desert soils associated with high SNO_x in rural California could lead to poor air quality

Summary

- The model with BDISNP shows a better agreement with TROPOMI NO₂ columns and can reproduce the observed rain-induced pulse event of SNO_x, giving us confidence in SNO_x estimates.
- 40.1% of the state's total NO_x emissions are from soils in July 2018, and SNO_x could exceed anthropogenic sources over croplands, accounting for 50.7% of NO_x emissions.
- Such considerable SNO_x enhance the monthly mean NO₂ columns by 34.7% (53.3%) and surface NO₂ concentrations by 176.5% (114.0%), leading to an additional 23.0% (23.2%) of surface O₃ concentration in California (cropland).
- SNO_x serves as an important source of atmospheric NO_x in California, particularly in rural regions with high fertilizer application but also in minimally managed native drylands, and should be included in regulations to reduce adverse effects to air quality and human health.
- Acknowledgement: We thank National Science Foundation and the Department of Agriculture in the U.S. for funding support.

Sha, T.*, X. Ma, H. Zhang*, N. Janechek*, Y. Wang*, Y. Wang*, L. Castro*, G. Jenerette, **J. Wang**, Impacts of soil NOx emission on O3 air quality in rural California, *Environmental Science & Technology*, 55, 7113–7122, DOI: https://doi.org/10.1021/acs.est.0c06834, 2021.