

TEMPO NO₂ Algorithm Development: Lessons Learned from OMI and Aircraft Retrievals

Lok Lamsal & Nickolay Krotkov

with contributions from

Alexander Vasilkov, Wenhan Qin, David Haffner, Scott Janz, Kenneth Pickering, Joanna Joiner, Rob Spurr, and few other GSFC colleagues

lok.lamsal@nasa.gov

4th TEMPO Science Team Meeting
Washington DC
June 2, 2016

Two Relevant Papers

<u>Vasilkov et al.</u>, Accounting for the effects of surface BRDF on satellite cloud and trace-gas retrievals: A new approach based on geometry-dependent Lambertian-equivalent reflectivity (LER) applied to OMI algorithms, *Atmos. Meas. Tech. Disc.*, 2016.

Lamsal et al., High resolution NO₂ observations from the Airborne Compact Atmospheric Mapper: Retrieval and Validation, J. Geophys. Res. (to be submitted).

Retrieval Scheme for Stratospheric and Tropospheric NO₂

Strat-trop separation → Next talk by Jeffrey Geddes

Sensitivity of AMF to Surface Reflectivity

 0.01 change in surface reflectivity can change retrieval by 2-20%. Changes are larger for polluted areas and low reflective surfaces.

Surface Reflectivity Affects Trace-gas Retrievals directly (via AMF) and indirectly (via cloud correction)

Surface Reflectivity and Trace-gas Retrievals: Issues

- □ Operational cloud and trace-gas algorithms use climatological surface LER data base (OMI or TOMS-based) for surface reflectivity
 - Coarse resolution (0.5°×0.5°)
 - Cloud and aerosol contaminations
 - Independent of geometry, but reflection of incoming light depends on observational geometry described by Bidirectional Reflectance Distribution Function (BRDF)

Backscattering: Sun behind observer

Forward scattering: Sun opposite of observer

Surface Reflectivity and NO₂ Retrievals: Issues

□ Some of the issues with climatological data can be addressed using MODIS data, but MODIS products include different reflectivity types:

WSA as LER (valid only when diffuse radiation >> direct radiation)
BSA as LER (incorrect single and multiple scattering contribution)
BRF as LER (incorrect multiple scattering contribution)

Studies/product	Reflectivity type (MODIS)	Modification in cloud retrieval?
Russell et al., 2011 (BEHR)	BSA as LER	No
Zhou et al, 2012	BSA, WSA, BRF as LER also, Complete BRDF model	No
Lin et al., 2015 (POMINO, Dalhousie AMF)	Complete BRDF model	Yes

- All previous studies are <u>limited over land</u>
- Calculating AMF with BRDF model is computationally expensive

Development of Geometry-dependent LER

Vasilkov et al, AMTD, 2016

$$LER = \frac{R - R^0}{T + S(R - R^0)}$$

R = TOA radiance

 R^0 = Path scattering reflectance of atm

T = Quantity representing atmospheric transmittance

S = Spherical albedo of atmosphere

- Applicable to both land and water surface
- Algorithms remain unchanged

Same Area, Different Days, Different Years, Different LERs

High-resolution MODIS BRDF-derived LER (466 nm) at OMI geometry

2005 2013

Surface Reflectivity (LER) Comparison

OMI orbit 012414 (November 14, 2006)

Cloud Radiance Fraction (CRF) Comparison

Cloud Pressure (CP) Comparison

NO₂ AMF Comparison

NO₂ AMF Comparison

Tropospheric NO₂ Retrievals Are Very Sensitive to A-Priori NO₂ Profiles

Emissions

Chemistry

Dynamics/Transport

Maryland, DISCOVER-AQ (July 2011)

Model Issues

PBL height; Vertical mixing; Low free-trop NO₂; Emissions

AMF & A-Priori NO₂ Profiles: Mixing Scheme & PBL Heights

July average NO₂ profiles for 3 PM local time (DISCOVER-AQ, Maryland, 2011)

Surface reflectivities: 0.1 to 0.15 at 0.01 steps
Solar zenith angles: 10° to 85° at 5° steps
Aerosol optical depths: 0.1 to 0.9 at 0.1 steps

 Errors in PBL heights and differences in mixing scheme can lead to errors of up to 25%. Different errors for different PBL schemes.

Sensitivity of AMF to A-Priori NO₂ Profiles: Emission Inventory

 Profiles based on outdated or inaccurate emissions can introduce significant retrieval errors.

AMF and A-Priori NO₂ Profiles: Too Low Free-tropospheric NO₂

 How are retrievals affected if free-tropospheric NO₂ is too low? Example based on missing lightning NO_x emissions.

GMI simulation for June, 2005

(AMF_{NoL}-AMF_L)/AMF_L

Neglecting lightning NO_x changes profiles, AMFs, and therefore NO₂ columns

AMF and A-Priori NO₂ Profiles: Model Spatial Resolution

Short-lifetime of NO₂ lead to steep gradient in NO₂ concentration near sources, so resolution matters.

 A factor of 4 increase in resolution changes retrievals by up to 15% in some locations.

Conclusions

- ☐ Gemeotry-dependent LER product for TEMPO would help improve cloud and trace-gas retrievals;
- □ There are several issues on model-based a-priori NO₂ profiles that need to be carefully evaluated for application to TEMPO.

AMF & Surface Reflectivity: Sensitivity

AMF & Surface Reflectivity: Our Approach

MODIS (MCD43GF)
BRDF coeff (f_{iso}, f_{vol}, f_{geo})
30 arc sec, 8-day, gap-filled

OMI

Pixel corners

$$\theta, \nu, \phi$$

$$\overline{f}_{iso},\overline{f}_{vol},\overline{f}_{geo}$$

VLIDORT (V2.7)
RossThick-LiSparse
Cox-Munk
Water leaving

$$LER = \frac{R - R^0}{T + S(R - R^0)}$$

R = TOA radiance

 R^0 = Path scattering reflectance of atm

T = Atmospheric transmittance

S = Spherical albedo of atmosphere

