ispex.nl/en/ispex

Stap 2

Beweeg met gestrekte arm

hoofd

Annuleren

Fijnsto

Kaart

Spectrum

Polarisatio

Charleroi •

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Status of **TROPOMI** on Sentinel 5 Precursor

Pepijn Veefkind veefkind@knmi.nl

KNMI | TU-Delft

GMES ATMOSPHERE MISSION IN POLAR ORBIT

- The ESA Sentinel-5 Precursor (S-5P) is a pre-operational mission focussing on global observations of the atmospheric composition for air quality and climate.
- The TROPOspheric Monitoring Instrument (TROPOMI) is the payload of the S-5P mission and is jointly developed by The Netherlands and ESA.
- The planned launch date for S-5P is 2015 with a 7 year design lifetime.

TROPOMI

• UV-VIS-NIR-SWIR nadir view grating spectrometer.

- Spectral range: 270-500, 675-775, 2305-2385 nm
- Spectral Resolution: 0.25-1.1 nm
- Spatial Resolution: 7x7km²

Global daily coverage at 13:30 local solar time.

CONTRIBUTION TO GMES

- Total column O₃, NO₂, CO, SO₂,CH₄, CH₂O,H₂O,BrO
- Tropospheric column
 O₃, NO₂
- O₃ profile
- Aerosol absorbing index, type, optical depth

sentinel-5 precursor

→ GMES LOW EARTH ORBIT ATMOSPHERE MISSION

→ GMES LOW EARTH ORBIT ATMOSPHERE MISSION

2015-2022 daily global coverage

TROPOMI Science Objectives

- To better constrain the strength, evolution, and spatiotemporal variability of the sources of trace gases and aerosols impacting air quality and climate.
- To improve upon the attribution of climate forcing by a better understanding of the processes controlling the lifetime and distribution of methane, tropospheric ozone, and aerosols.
- To better estimate long-term trends in the troposphere related to air quality and climate from the regional to the global scale.
- To develop and improve air quality model processes and data assimilation in support of operational services including air quality forecasting and protocol monitoring.

Suomi-NPP - S5P formation Flying

- S-5P is planned to observe within 5 min. of Suomi-NPP.
- Primary goal is to use VIIRS cloud mask for S-5P methane observations.
- Other opportunities:
 - TROPOMI-VIIRS cloud and aerosol combined products.
 - TROPOMI-OMPS-CRIS ozone profiles.
 - TROPOMI-OMPS intercalibration.

Principal Investigator KNMI (PI), SRON (co-PI)

Validation KNMI, SRON, ESA, ...

Level I -2 KNMI, SRON, DLR, IUP BIRA-IASB, MPI Mainz, RAL

> Level 0-1B KNMI

Ground Segment

Operations KNMI, ESOC

Calibration KNMI / SRON Dutch Space

Instrument prime Dutch Space

TROPOMI Status

- I-CDR successfully completed
- Modules are being assembled
- Start of calibration: June 2014
- Instrument delivery: September 2014
- Planned launch date: September 2015

TROPOMI Data Products

Product	Accuracy :: Precision				
Ozone total column profile (incl. troposphere) trop. column	3% :: 1% 10% :: 5% 25% :: 10%				
NO₂ total column trop. column	I ·I0 ¹⁵ mol/cm ² I0% :: I ·I0 ¹⁵ mol/cm ²				
CO total column	15% :: 10%				
CH₄ total column	2% :: 1%				
SO2 volcanic plume top. column	2 DU :: I DU I DU :: 0.5 DU				
Aerosol AAI aerosol layer height [*] aerosol optical thickness single scattering albedo	n/a :: 0.25 I km :: 0.5 km 0.1 (20%) :: 0.05 (10%) 0.05 :: 0.01				
Cloud radiance fraction pressure mask Regridded VIIRS	0.05 :: 0.02 50 hPa :: 20 hPa				

Product	Accuracy :: Precision
CH₂O total column	TBD
CHO-CHO total column	TBD
BrO total column	TBD
HDO total column	TBD
H ₂ O total column	20% :: 10%
OCIO total column	TBD
UV surface flux	10% :: 5%
Surface Reflectance monthly climatology	3% :: 1%

The operational data products will be developed by a collaboration of European institutes. (NMI/DLR-IMF/IUP/BIRA-IASB/SRON/MPIC/RAL/FMI

Dutch Space

Performance Overview

Spectrometer	UV		UVIS		NIR		SWIR	
Band ID	1	2	3	4	5	6	7	8
Full Range [nm]	270 - 320		310 - 495		675 - 775		2305 - 2385	
Performance range [nm]	270- 300	300- 320	320- 405	405- 495	675- 725	725- 775	2305- 2345	2345- 2385
Spectral Resolution FWHM[nm]	0.48	0.49	0.54	0.54	0.38	0.38	0.25	0.25
Spectral Sampling [nm]	0.071	0.073	0.22	0.22	0.14	0.14	0.10	0.10
Spectral Sampling Ratio ¹	6.8	6.7	2.5	2.5	2.8	2.8	2.5	2.5
Slit Width (µm)	560	560	280	280	280	280	560	560
Spectral magnification	0.327	0.319	0.231	0.231	0.263	0.263	TBD	TBD
Spatial Sampling at nadir [km ²]	28x7	7x7	7x7		7x7	3.5x7	7x7	
Required Signal-to-noise	100- 800 ^{2,3}	90- 700 ²	800-1000 ²		100-500 ^{2,4}		100-120 ⁵	
Required Signal-to-noise	100- 800 ^{2,3}	90- 700 ²	800-1000 ²		100-500 ^{2,4}		100-120 ⁵	
[km²]	FOVA					21222		

OMI ZOOM ~13x12 km² Sampling 12 September 2006

SNR - CDR Status

From OMI to TROPOMI

- 6x higher spatial resolution
 7x7 km² vs. 13x24 km²
- 1-5x higher signal-tonoise
- Variable binning scheme

- **better cloud information** from the oxygen A+B bands
- CO and CH₄ observations from the SWIR band
- Data rate ~20x OMI

OMI Lessons Learned

- CCD in NIMO mode and at ~220K because of random telegraph signals (RTS).
- No MLI close to the primary mirror field of view [row anomaly].
- Improve the image quality of the polarization scrambler (Req. pol. sens. 0.5%)
- Two identical QVD solar diffusers measuring over the first mirror.
- No channel breaks around 300 nm.
- Optical bench temperature stabilized.
- One-team approach to L01b, on-ground calibration and in-flight calibration.
- *many more -*

Telescope First Mirror

Courtesy: Dutch Space

Instrument Control Unit

TROPOMI L2 PRODUCTS

L2 Working Group

KNMI | DLR | IUP-Bremen | BIRA | SRON | MPIC | RAL

Level 1-2 Algorithm Challenges

- Data rate (300 spectra/s) in combination with NRT requirements requires multi-threading processing.
- Surface albedo / clouds / aerosol are linked. Spatial variations have to be taken into account in the trace gas retrievals.
- Provide realistic diagnostic information and userfriendly product.

The Role of TROPOMI in the GEO Constellation

- Open data policy, including L1B data.
- Harmonize L1B and L2 formats to easily exchange data.
- Use similar on-ground calibration standards and exchange in-flight CAL/ VAL procedures.
- Harmonize L1-2 algorithms as far as practically possible (e.g. cross sections, DEM, AMF LUTs)

Summary & Outlook

veefkind@knmi.nl

www.tropomi.eu

www.temis.nl

www.knmi.nl/omi

http://www.esa.int/esaLP

- TROPOMI will be a major step forward for atmospheric composition observations due to improved spatial resolution & sensitivity.
- The high spatial resolution provides new opportunities, while at the same time being challenging for the Level 2 product development.
- Sentinel 5 Precursor will connect to the geostationary missions providing in-flight CAL/ VAL opportunities.

Contents lists available at SciVerse ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications

J.P. Veefkind ^{a,g,*}, I. Aben ^b, K. McMullan ^c, H. Förster ^d, J. de Vries ^e, G. Otter ^f, J. Claas ^a, H.J. Eskes ^a, J.F. de Haan ^a, Q. Kleipool ^a, M. van Weele ^a, O. Hasekamp ^b, R. Hoogeveen ^b, J. Landgraf ^b, R. Snel ^b, P. Tol ^b, P. Ingmann ^c, R. Voors ^e, B. Kruizinga ^f, R. Vink ^f, H. Visser ^f, P.F. Levelt ^{a,g}

http://dx.doi.org/10.1016/j.rse.2011.09.027

TROPOMI

TROPOspheric Monitoring Instrument

www.tropomi.eu

Home Instrument Data Doc Contact

The TROPOspheric Monitoring Instrument (TROPOMI) is a spaceborne nadir viewing spectrometer with bands in the ultraviolet, the visible, the near infrared and the shortwave infrared. TROPOMI is the payload for the ESA/GMES Sentinel 5 Precursor mission, planned for launch in 2014 with 7 years design lifetime. The objective of the mission is to provide high-quality and timely information on the global atmospheric composition for climate and air quality applications. TROPOMI will make daily global observations of key atmospheric constituents, including ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, methane, formaldehyde and aerosol properties. The Sentinel-5 Precursor mission will extent the current data records from OMI (Ozone Monitoring Instrument) on NASA EOS Aura and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY) on ESA Envisat and is the link between the current scientific missions and the operational Sentinel-4/-5 missions.

TROPOMI is an initiative from the Netherlands and is developed in cooperation

Functional Diagram

Lessons learned incorporated in TROPOMI (1)

- better heater control
- OBM thermal stabilized
- no MLI in front of primary mirror field of view [row anomaly]
- close interaction between operations, L01b, OCAL, ICAL calibration and L2 people
- CCD used in NIMO to prevent RTS due to radiation damage
- no ALU diffusers, 2 identical QVD diffusers
- WLS and LED in calibration unit [alternative for WLS]
- LED's for all detectors [better short term stability]
- Laser diodes for ISRF monitoring in SWIR [ice layer]
- operations baseline seasonal independent and optimized for trend monitoring
- aluminum platform [water vapour]

Lessons learned incorporated in TROPOMI (2)

- verification of onground calibration
- validation of accuracy of calibration vs requirements
- tools to monitor the calibration process
- calibration rehearsal
- formal error propagation
- CKD errors not taken into account
- L01b data processor not used during OGC
- flight representative conditions
- calibration definition by PI institute, execution under industry responsibility
- One-team approach to I01b / onground calibration and inflight calibration
- 2 axis turn tilt cradle in vacuum facility
- No vacuum breaks during calibration [only 1]

Sentinel 5 Precursor Platform

- ASTRIUM Astrobus L 250 M
- 3-axis stabilized with yaw steering
- Launch mass 900 kg, including 80 kg fuel
- Data storage 230 Gbit.

Ozone Monitoring Instrument

Ozone Monitoring Instrument

Imaging spectrometer Instrument Spectral Range 270 - 500 nm Spectral Resolution 0.45 - 0.63 nm Spectral Sampling 0.15 - 0.30 nm Spatial Resolution 13x24 km² (nadir) Swath Width 2600 km Mass 65 kg Size 50 cm x 40 cm x 35 cm 66 W Power 0.8 Mbps (average) Data rate Spacecraft NASA EOS-Aura 15 July 2004 Launch Date Sun synchronous, 13:30 hr Orbit 705 km Altitude Agencies NSO (NIVR), FMI KNMI, FMI **PI** Institutes

OMI is the Dutch-Finnish contribution to the NASA EOS-Aura Mission and is developed by an international consortium led by Dutch Space and TNO.