TEMPO Aerosols and Clouds

Jun Wang

University of Iowa

With contributions from

Omar Torres, Mian Chin, and Joanna Joiner NASA GSFC

> Shobha Kondragunta NOAA STAR

> > James Szykman EPA

Rapporteur: Nathan Janechek University of Iowa

TEMPO Science Team Meeting, August 2020

1

Outline

- Introduction: aerosols/clouds in TEMPO STM
- Aerosol data/science uniquely enabled by TEMPO
 - 1) hourly retrieval of aerosol absorption
 - 2) hourly retrieval of spectral AOD and surface reflectance
 - 3) hourly retrieval of aerosol centroid layer height
- Cloud data/science uniquely enabled by TEMPO
 - hourly retrieval of cloud optical centroid pressure from O2-O2 band
- TEMPO applications and synergy with other sensors
 - 1) surface networks, AOD-PM2.5 relationship
 - 2) with GOES-16 and GOES-17
 - 3) with TROPOMI, GMES, Sentinel-4 (S4), Sentinel-5 (S5), ...
 - 4) with MODIS, MISR, VIIRS, MAIA

Importance of aerosols and clouds

re omnipresent,	TEMPO Science Goals	TEMPO Objectives
trieval of gases	Characterize the temporal and	Collect simultaneous high
and collectively reflect	spatial variations of emissions important for AQ and climate;	temporal and spatial resolution measurements of pollutants over
ed part of TEMPO objectives	observe continental inflow and outflow of pollution. 1 , 2 , 5 , 6 , 7 , 8 ,9	Greater North America.
precast & process studies	Understand how processes determine AQ over range of time	Measure the major elements in tropospheric O_3 chemistry &
ed part of TEMPO objectives	and space scales. 1,2,5,6,7,8	aerosol cycles.
te forcing studies	Characterize the effect of episodic events, e.g. volcanic eruptions, wild fires and dust	Observe aerosols & gases for quantifying and tracking evolution of pollution.
present 60%-70% of time,	outbreaks, on AQ. 1,2,6,8	
e cycle of gases and aerosols	from space can improve AQ	TEMPO and other platforms into
rce of uncertainty for aerosol	torecasts and assessments for societal benefit. 3,4,5,7,8,9	models to improve representation of processes.
S	Understand how air pollution	Determine the instantaneous
ed part of TEMPO objectives	drives climate forcing and how climate change affects AQ on a	radiative forcings associated with O ₃ , <u>aerosols & clouds</u> on the

continental scale. 4,5,6,8

Aerosols ar ٠

- affect ref
- partially emissior
- Integrate for AQ for
- Integrate for clima

Clouds are

- Affect life
- Key sour retrieval
- Integrate for climate forcing studies

Table D.1-1 in TEMPO proposal

continental scale.

Aerosol data/science uniquely enabled by TEMPO (1) hourly retrieval of aerosol absorption

Operational product led by O. Torres

- UV Aerosol Index,
- AOD and SSA (388 nm) using 354 and 388 nm measurements
- Heritage Algorithms : OMAERUV (Aura-OMI) & TropOMAER (S5P-TROPOMI)
- Status: ready at launch

Sciences

- Tracking smoke/dust plumes including in cloudy conditions
- Process understanding of aerosol particle evolution in the atmosphere
- Aerosol radiative absorption

Near UV Inversion Scheme

For a given aerosol type and layer height, satellite measured radiances at 354 and 388 nm are associated with a set of AOD and SSA values.

Aerosol data/science uniquely enabled by TEMPO (2) hourly retrieval of spectral AOD and surface reflectance

Research algorithm led by U. Iowa

- Simultaneous retrieval of spectral AOD, AOD fine-mode fraction, and surface reflectance
- New algorithm developed under support of GEO-CAPE, GEO-TASO, and TEMPO
- Status: prototype tested with KORUS-AQ data; continuing with GCAS data;

Sciences

- Hourly analysis of aerosol size
- Process understanding of aerosol particle evolution in the atmosphere
- Improve estimates of aerosol radiative forcing

- An algorithm for hyperspectral remote sensing of aerosols & weights of PCs at the same time
- 1. Development of theoretical framework, JQSRT, 2016.
- 2. Information content analysis for aerosol parameters and principal components of surface spectra, JQSRT. 2017.
- 3. Application to the GEO-TASO data in KORUS-AQ field campaign, JQSRT. 2020.

Aerosol data/science uniquely enabled by TEMPO (3) hourly retrieval of aerosol centroid layer height

(a)

Research algorithm, U. Iowa & GSFC

- Retrieval of aerosol layer height (ALH) using O2 B-band.
- Heritage: EPIC/DSCOVR
- Status: prototype tested with TROPOMI data.

Sciences

- Mesoscale 3D view of aerosol movement Process understanding of aerosol injection and vertical transport in the atmosphere
- Improved estimate of surface PM2.5

TOA TOA TOA Air(O₂) Aerosol layer Surface Low aerosol altitude

Xu, X., J. Wang, et al., Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: Hourly results from EPIC/DSCOVR satellite in deep space, *Atmospheric Measurements and Techniques*, 2, 3269–3288, 2019, 2019.

Xu, X., J. Wang, et al., Passive remote sensing of altitude and optical depth of dust plumes using the oxygen A and B bands: First results from EPIC/DSCOVR at Lagrange-1 point, *Geophys. Res. Lett.*, 44, 7544-7554, 2017.

Simultaneous Retrieval of ALH and AOD from O2B bands (680 vs. 688 nm)

S-NPP/VIIRS July 31, 2018

Courtesy: O. Torres

Comparison to CALIOP and KNMI O2A Retrieval

Tropomi 680 nm AOD vs MODIS 660 nm AOD

Retrieval of ACH and AOD from blue & O₂ B bands over land

for details, see Xi Chen's poster

0.40

0.30

0.35 7

- 0.25 - 0.20 - 0.15 - 0.15

- 0.10 iuctio - 0.05 -

EXti

Cloud

Lat (°N)

-97.1 Lon (°E)

54.0

- 0.20

Cloud data/science uniquely enabled by TEMPO cloud optical centroid pressure retrieval from O₂-O₂ band

Courtesy: Alexander (Sasha) Vasilko & Joanna Joiner

- An advanced spectral fitting algorithm for retrieving O_2 - O_2 slant column densities (Vasilkov et al., 2018)
 - Use of the temperature-dependent O₂-O₂ cross sections
 - Removal of O₃, NO₂, and H₂O absorption based on estimates of their slant column densities (SCDs) from independent algorithms
 - Account for specifics of surface reflectivity
- Hourly cloud optical centroid pressure (OCP) retrieved from the O₂-O₂ SCD (using LUTs with the DOAS-type approach); cloud fraction, etc.
- Status: adaptation for TEMPO geometry may need additional nodes of the LUTs

Nov. 13, 2006

TEMPO applications and synergy with other sensors (1) importance of surface networks, AOD-PM_{2.5} relationship,

Huanxin (Jessie) Zhang

Zhang et al., 2020, JGR

Improving Surface PM_{2.5} Forecasts in the United States Using an Ensemble of Chemical Transport Model Outputs: 1. Bias Correction With Surface Observations in Nonrural Areas, *J. Geophy. Res. – Atmos.*, 125(14), e2019JD032293, 2020.

Diurnal variations of AOD and PM2.5 – what should we expect from geostationary satellite observations for air quality

Mian Chin¹, Qian Tan², Alex Coy³, Tianle Yuan^{1,4}, Hongbin Yu¹

¹NASA Goddard Space Flight Center ²Bay Area Environmental Research Institute ³Now at Cornell University ⁴University of Maryland Baltimore County

Background

- Monitoring air quality from space has played a key role in our understanding of the status and trends of air pollution. The geostationary satellite data bring the possibility of getting hourly air quality
- Challenges: the AOD-PM_{2.5} relationship is not constant but depends on many factors including
 - aerosol vertical profile (e.g., aerosol fraction in the PBL) affecting PM_{2.5} levels
 - chemical composition, size distribution affecting PM_{2.5} and AOD
 - relative humidity or water vapor amount affecting AOD
 - Mesoscale and synoptic scale meteorology

Fresno 2013 as an example: Collocated AERONET AOD and EPA PM_{2.5}

19% of the days in 2013 the hourly AOD and $PM_{2.5}$ are correlated at R \ge 0.7 and 31% of the days they are negatively correlated

- a) Examples of daytime hourly variations of AOD and PM_{2.5} in four different days in May 2013
- b) Daily mean
 AOD and PM_{2.5}
 in May 2013
- c) Monthly mean AOD and PM_{2.5} in 2013

- AOD-PM_{2.5} often have different variability on diurnal timescale
- AOD-PM_{2.5} are better correlated on daily scale in the sub-seasonal time domain
- AOD-PM_{2.5} ratios change significantly with seasons

Beijing 2015 as an example: Collocated AERONET AOD and surface PM_{2.5}

36% of the days in 2013 the hourly AOD and $PM_{2.5}$ are correlated at R \ge 0.7 and 25 % of the days they are negatively correlated

Recommendations:

- 1) Including diurnal variations of PBL height, RH or column water vapor, and effective aerosol layer height (can be obtained from satellite and ground stations) in deriving PM2.5 from TEMPO or GOES AOD data
- 2) Including aerosol composition and/or particle size and aerosol vertical profiles (can be estimated from limited observations, or from credible models or reanalysis)

Using a physically-based machine learning model to retrieve PM_{2.5} from AOD: Preliminary experiment with GEOS simulation as a test

- GEOS/GOCART output at 3-hourly, 0.5° horizontal resolution over the globe for the entire year of 2012
- Randomly select 2x10⁷ data points as training dataset including variables of AOD, PM_{2.5}, PBL height, column water vapor, and aerosol vertical extinction profiles (surface to tropopause), and 6x10⁶ independent data points to retrieve PM_{2.5} from AOD

(Preliminary study by Tianle Yuan, NASA GSFC)

TEMPO applications and synergy with other sensors (2) with GOES-16, GOES-17, and AQ applications

Synergy between GOES and TEMPO algorithms

- Cloud screening and sub-pixel cloud
- Spectral properties of aerosols and surfaces
- Multiple angle characterization of aerosol properties

 Retrieval of aerosol layer height, enabling OMI+MODIS type of algorithm for air quality applications

DFS for AOD are increased by TEMPO+GOES, especially near the exact backscattering angle. Wang et al., JQSRT, 2014.

Temporally Resolved AOD for PM2.5

To estimate PM2.5 concentrations of the air we breathe, we need temporally resolved AOD measurements

Courtesy: S. Kondragunta

Suite of Aerosol Products from Imager/Spectrometer Synergy

Requirements for Synergy

- Orbital location of satellites carrying the imagers and spectrometers important
 - Longitudinal separation of 30° or less is desired
 - ✓ GOES-R (16) at 75.2°W and TEMPO at 100°W
 - Two to six 500m ABI pixels fall into each TEMPO pixel depending on whether the region of interest in near-nadir or off-nadir

Courtesy: S. Kondragunta

Synergy Experiment

- GOES-R/TEMPO Synergy tested with S5P TROPOMI/SNPP VIIRS
- G2A AMI/G2B GEMS gives an opportunity to test the synergy from a geostationary orbit

$$AAI = -100 \left[\log_{10} \left(\frac{R_{0.41}}{R_{0.44}} \right) - \log_{10} \left(\frac{R'_{0.41}}{R'_{0.44}} \right) \right]$$
$$DSDI = -10 \log_{10} \left(\frac{R_{0.41}}{R_{2.2}} \right)$$

Courtesy: S. Kondragunta

TEMPO applications and synergy with other sensors (3) with TROPOMI, GEMS, Sentinel-4 (S4), Sentinel-5 (S5), ...

Use TROPOMI as a 'bridge' to bring together intercomparisons of aerosols/clouds products among different algorithms/sensors

- Aerosol centroid layer heights
 - GEMS O4 technique
 - TROPOMI/S5 O2 A-band spectral fitting technique
 - TEMPO O2 B-band band-intensity fitting technique
- Cloud centroid pressure
 - TROPOMI O4 technique
 - TEMPO O4 technique
 - GEMS O4 technique
 - Cloud fraction
- UV aerosol product
- AOD product

. . .

TEMPO applications and synergy with other sensors (4) with MODIS, MISR, VIIRS, MAIA, ...

TMEPO intercomaprsion with

- MISR aerosol/cloud stereo height
- MODIS/VIIRS cloud top height, cloud fraction,
- MISR/MAIA AOD, fine-mode AOD, ...
- Surface reflectance

Synergy with VIIRS for nighttime AOD and ^{Incandescent} nighttime light pollution studies

- VIIRS + TEMPO have the potential to characterize the surface light bulb type and spectral intensity
- VIIRS + TEMPO may lead to improved retrieval of nighttime AOD and fire confusion efficiency

Carr et al., JRSL, 2017.

Nighttime AOD and PM_{2.5} mapping for details, see Meng Zhou's poster

Sep. 2012

Needs:

- NAAQS requires 24-hr averages.
- Nighttime AOD data enriches model evaluation and data assimilation & forecast

TEMPO + VIIRS

- TEMPO: derive urban light spectra

TMEPO+VIIRS have the potential to advance surveillance of light pollution and studies of light pollution on public health

- 99% U.S. population live with light-polluted activities skies (Falchi et al., Sci. Adv., 2016)
- Light pollution leads to circadian disruption & sleep deficiencies, affecting human health.
- Photoreceptor cells critical to circadian regulation in human eyes peaks at blue wavelength

ISS nighttime image over Houston on 9 Aug. 2014

Summary

- Daytime hourly retrieval of aerosol absorption, spectral AOD and surface reflectance, as well as aerosol centroid layer height, which can advance AQ forecast and climate forcing studies (a key component of TEMPO STM).
- Daytime hourly retrieval of cloud centroid pressure and cloud fraction.
- *Strong synergy* with other sensors and surface networks to characterize AOD, fine-mode AOD, aerosol/cloud layer height.
- *New nighttime* observations to explore surface light pollution, AOD and surface PM_{2.5} air quality, fires,
- Many exciting products can be on the way provided there are resources support
- An emergent era for aerosol layer height retrieval also calls for validation planning with surface networks of ceilometer/lidar and space-borne lidar (especially after CALIOP).

Courtesy: James Szykman Ceilometer Network

Research Collaboration between EPA, University of Maryland, Baltimore County (UMBC), Maryland Department of the Environment (MDE), and NASA https://alg.umbc.edu/ceilometer-network/

Objectives:

Maximize the science and applications value of ceilometer measurements at EPA Photochemical Assessment Monitoring Station Network

Allow for ceilometers at non-PAMS sites to become part of a larger network

Development and application of standardized retrieval algorithms for heterogeneous network

Caicedo et al. (2020) "An automated common algorithm for planetary boundary layer retrievals using aerosol lidars in support of the U.S. EPA Photochemical Assessment Monitoring Stations Program"

Development of data archive for ceilometer backscatter profiles and associated geophysical data products - mixing layer heights/aerosol layers heights/cloud based heights

- PAMS/Ncore sites contains a suite of trace gases and aerosols, subset of sites with Pandoras
- Used to support model development and evaluation and EPA exceptional events analysis
- Collaboration with MPLNet to extend use of data through WMO

Operational by June 2021

MLH

Vanessa Caicedo **Ruben Delgado**

TEMPO, GEO-CAPE, ACMAP, KORUS-AQ, Applied sciences

Backup slides

Large uncertainty in aerosol vertical profile

Large uncertainty in our modeling of aerosol vertical profile highly relevant to climate and air quality prediction

Xu, Wang, et al., 2019

TEMPO, GEO-TASO, and GCAS

